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FOREWORD

This is the progress report on the research project "Surface Modeling and

Optimization Studies of Aerodynamic Configurations." Within the guidelines

of the project, our attention was directed toward research activities in the

area of surface reconstruction by optimization techniques and spline smooth-

ing. The period of performance of this specific research was from January

1, 1994 to December 31, 1994. Our research was supported by the NASA

Langley Research Center through Cooperative Agreement NCC1-68. The

cooperative agreement was monitored by Dr. Robert E. Smith Jr. of System

and Information Devision (Scientific Application Branch), NASA Langley

Kesearch Center.
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AUTOMATION OF REVERSE ENGINEERING
PROCESS IN AIRCRAFT MODELING AND

RELATED OPTIMIZATION PROBLEMS

Dr. W. Li and Dr. J. Swetits

Old Dominion University

Summary

During the year of 1994, we studied reverse engineering problems in aircraft

modeling. Our initial concern was to obtain a surface model with desirable

geometric characteristics. Much of the effort during the first half of the year

was to find an efficient way for solving a computationally difficult optimiza-

tion model. Since the smoothing technique in the proposal "Surface Modeling

and Optimization Studies of Aerodynamic Configurations" requires solutions

of a sequence of large-scale quadratic programming problems, it is important

to design algorithms that can solve each quadratic program in a few itera-

tions. Our research led to 3 papers by Dr. W. Li, which were submitted

to SIAM Journal on Optimization a_nd Mathematical Programming. Two of

these papers have been accepted for publication.

Even though significant progress has been made during this phase of re-

search and computation time was reduced from 30 minutes to 2 minutes for

a sample problem, it was not good enough for on-line processing of digitized

data points. After discussion with Dr. Robert E. Smith Jr., we decided not to

enforce shape constraints in order to simplify the model. As a consequence,

we adopted P. Dierckx's nonparametric spline fitting approach, where one

has only one control parameter for the fitting process - the error tolerance.

At the same time we also tested the surface modeling software developed by

Imageware. Our research indicates a substantially improved fitting of digi-

tized data points can be achieved if a proper parameterization of the spline

surface is chosen. A winning strategy is to incorporate Dierckx's surface

fitting with a natural parameterization for aircraft parts.

The report consists of 4 chapters. Chapter 1 provides an overview of re-

verse engineering related to aircraft modeling and some preliminary findings

of our effort in the second half of the year. Chapters 2-4 are the research

results by Dr. W. Li on penalty functions and conjugate gradient methods

for quadratic programming problems.
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Chapter 1

Automation of Reverse

Engineering Process in

Aircraft Modeling

In this chapter we analyze the reverse engineering process in aircraft modeling

and point our what can make the reverse engineering process more accurate

and efficient.

1.1 Introduction

Reverse engineering is a relatively new terminology emerging from late 80's

[3]-[15]. If one researches the literature on reverse engineering, one will find

references on reverse engineering in software development and maintenance

as well as reverse engineering related to computer-aided manufacturing. Per-

haps it is appropriate to call it reverse mechanical engineering when it is

related to modeling of a mechanical part. Mechanical engineering is a pro-

cess that starts with a design and ends with a mechanical product. Therefore,

any process that starts with a mechanical part and ends with a design might

be called reverse mechanical engineering. Recently, with the development

of advanced laser digitizer and computer-aided manufacturing, reverse me-

chanical engineering is not only a research initiative but also an industrial

reality. Many researchers are looking for ways of building a "gigantic me-



m

=_

w

N

m

m

m

w

m
-...-

w

mrmnm
D

i
m

chanical copying machine" which automatically produces a replica of any

given mechanical part (or its scaled model).

Reverse mechanical engineering has many applications, such as manufac-

turing of a part from a new physical model, replication of a mechanical part

that does not have a computer-recognizable design, analysis/modification of

a mechanical part that does not have a computer-recognizable design, and

verification of a mechanical part that has a computer-recognizable design.

For aircraft modeling, reverse engineering can be used for verification of the

reliability/accura_:y of a scaled-down model based on a computer design and

CFD analysis of the structure of a new aircraft model based on its spline

surface representation.

In general, a reverse (mechanical) engineering process consists of 5 pro-

cedures: (1) acquisition of data points (it is done by using some coordinate

measuring machine, most likely a laser digitizer), (2) separation of data (it is

related to pattern recognition in artificial intelligence, such as extracting the

data points on a wing of an aircraft), or feature identification of the model,

(3) surface fitting of each part that has a simple geometric structure, (4)

reassembling of parts by using CAD programs, (5) computer-aided manufac-

turing (CAM) of the original model based on the mathematical model.

The important issues related to reverse engineering process in aircraft

modeling axe accuracy and efficiency. With enough resources, one can create

spline surface patches from digitized data points that represent the original

model. However, there are a few sources of inaccuracy in the modeling pro-

tess: (1) imperfection of the original model, (2) error in measurement by a

laser digitizer, (3) missing data points, and (4) error occurred in reconstruc-

tion of surface patches based on the digitized data points. The first three

types of errors are not our primary concern at the moment. As a matter of

fact, they axe relatively insignificant when compared with the human error

in reconstruction of surface patches. In order to produce an acceptable sur-

face model, we have to reduce fitting errors in surface reconstruction. With

advanced digitizing technology, it takes a few seconds to measure millions of

data points on a surface. How to process a huge amount of data points be-

comes a critical issue in surface reconstruction. Therefore, in order to make

the reverse engineering process work, we have to address accuracy and effi-

ciency issues in reconstruction of spline surface patches from digitized data

points.



1.2 Issues in Surface Reconstruction

The reconstruction of spline surface patches from digitized data points can

be roughly described as the following problem: given a set of measured data

points {(x_, y_, z_) : 1 < i < n} on an aircraft, find spline surface patches that

represent the aircraft "accurately" and "efficiently". This seemingly naive

mathematical problem is actually very difficult and complicated (cf. [3]).

It involves many different fields in mathematics, such as Computer-Aided

Geometric Design (CAGD), Approximation Theory, Numerical Optimization

Techniques, Nonparametric Regression in Statistics, and Numerical Linear

Algebra (for software coding).

First let us consider the accuracy issue. Ideally, one wants to find a spline

surface such that all the measured points are on the surface. Then we know

that, at least at those measured points, the spline surface faithfully repre-

sents the aircraft model. However, there are several reasons for us not to use

such a spline surface: (1) due to imperfection of the aircraft model and/or

measurement error, the measured point positions are not accurate and such

a spline surface normally has local oscillatory structure which is not realis-

tic as an aircraft's surface; (2) computationally, it might be impossible to

find such a surface and the related mathematical problem is called spline

interpolation in approximation theory; (3) even if one can find such a spline

surface, it usually requires a complicated mathematical form and its repre-

sentation might have tens of thousands of coefficients which is not desirable.

As a consequence, one has to set an error tolerance for the spline surface

representation of an aircraft model. A common practice is to use the stan-

daxd deviation as a measure of accuracy of the spline surface representation.

However, error analysis of fitting data points by a spline surface is a quite

complicated mathematical problem. Our objective is to improve surface fit-

ting techniques so that better surface representations can be produced as a

result.

Another issue is efficiency. There are two kinds of efficiency in surface

reconstruction: efficiency in use of resources and efficiency in mathematical

surface representation. If one has to spend days and months in order to

produce a desirable surface by using a software package, then the software

is not efficient for the reconstruction of a surface. If the mathematical sur-

face needs tens of thousands of parameters for its representation, then the

representation is not efficient. Here our objective is to design programs that
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can quickly produce a spline surface with only a few hundreds of parameters,

even though the digitized data set might contain a quarter of a million to a

million of data points.

However, there is a conflict in achieving our objectives. In general, a

more accurate representation of the data points yields a more complicated

spline surface which requires more parameters for its mathematical form.

Sometimes, we can not improve the accuracy of a surface representation

while using a simple mathematical form, and there has to be a trade-off

between the accuracy of a surface approximation and the simplicity of surface

representation. One might use some strategy in image compression, where

the rate of compression conflicts with the quality of the compressed image. In

wavelets compression of digitized images, Saito [1] used minimal information

description length to determine the optimal trade-off between accuracy and

simplicity. Similar ideas might be used here.

1.3 Description of Research Results

How can we design a program that produces a simple and accurate spline

surface representation of millions of digitized data points? In this section,

we describe one possible way to accomplish this task.

The reconstruction of a surface from digitized data points consists of

the following processes: (1) separation of a model into geometrically simple

parts, such as separation of an aircraft into wings, tails, and fuselage, etc.

(this process is called data separation in pattern recognition engineering); (2)

representation of each part as a spline surface (surface fitting); (3) reassem-

bling of the spline patches as one surface that represents the original model.

So far, our effort is on the surface fitting past of the modeling process. The

reason is that inaccurate surface fitting results in erroneous spline surface

representation of an aircraft model.

During the summer of 1994 when our research was funded by NASA

through the grant NCC-1-68 Supplement-15 from NASA Langley Research

Center, we studied various techniques for surface fitting. In particular, we

studied a shape-control regression model by forcing constraints on deriva-

tives, the B-spline curve/surface modeIing software "SUKFACER." developed

by Imageware, and the curve/surface fitting package in NETLIB library de-

signed by Dierckx. Here is a summary of our findings:
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Even though a shape-control regression model can produce a surface

with a desirable shape, it is very time consuming. The shape-control

regression model by B-splines is more complicated and the related op-

timization problem is more difficult to solve. Therefore, we abandoned

the shape-control modeling idea temporarily, since long turn-around

time is not acceptable in practice. However, we do want to produce

spline surfaces with certain geometric features, such as convexity or hi-

convexity. Especially, the shape of wings are crucial for its aerodynamic

characteristics. What we hope for is that, if the fitting of digitized data

is accurate enough, then the resulting surface would resemble the actual

model.

0

Our overall impression of "SURFACER" is very good. Its interface

is user-friendly and one can learn how to use the package in a short

time. The package is a state of art product and has great potentials.

However, there are three aspects of this product which still require

further research and development: (1) automatic pattern separation,

(2) parameterization of spline surface, and (3) surface fitting. Pdght
now, one has to identify each part of a model by naked eyes, even

though it has some artificial intelligence features to help the user. The

objective should make the interface transparent to the user so that one

knows how those automatic pattern recognition features can be used.

For a given set of data points, the spline surface generated by the

package is heavily dependent on the boundary curves one creates for

the data set. In some cases, the boundary curves completely determine

the final output, which is undesirable. The problem is the choice of

parameterization of the fitting spline surface. Due to the same problem,

the free form surface fitting is not reliable at all as pointed out by Dr.

Kurt Skifstad, the president of Imageware. Therefore, it is easy to find

the 4 boundary curves and a B-spline surface by using the package, but

the result might not be desirable. Then you have to go back and repeat

the process again. Sometimes delicate decisions have to be made during

the boundary curve fitting process so that the final spline surface would

be acceptable.

The curve/surface fitting package designed by Dierckx [2] is perfect for

aircraft modeling in the sense that there is only one control parameter:

5
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the fitting error tolerance. If you want to fit a set of data points by

a B-spline surface, then you provide a tolerance on how far you allow

the spline surface to deviate from the given data set and the prograrn

does the rest: it decides how many knots are needed, where to put

those knots, and finally produces a smoothest spline surface among the

ones that fit the data set within the given error tolerance. We believe

that this is the best strategy for aircraft modeling: finding the simplest

spline surface that fits the data with an acceptable error tolerance.

However, Dierckx's spline surface fitting subroutine can only fit a data

set {(x_, y_, z_) : 1 < i < n) where (x_, y_) axe points inside a rectangu-

lar region. But, in general, one first fits the boundary of a data set by

4 boundary curves, then uses the Gordan-Coons interpolant to get a

parameterization of the surface, and finally fits the data set by 3 spline

surfaces (x(u, v),y(u, v),z(u, v)) where (u, v) are parazneters defined on

a rectangular region. If we use Dierckx's curve/surface fitting package,

it will enhance the performance of "SURFACER", where one has to

use many different parameters to control the fitting process. For de-

signers, more control parameters provide flexibility in design process;

but, for reverse engineering, many different control parameter could be

a nightmare when deciding which set of parameters would give the best

fit.

1.4 Future Research Initiatives

Our objective is to enhance some aspects of "SURFACER", which will be

purchazed by NASA Langley Research Center, so that it can produce better

spline fitting of digitized data points of an aircraft. Here are some ideas

which can make the surface reconstruction more efficient and more accurate:

1. automation of some steps in the surface modeling process so that it

takes less time to produce a desirable spline surface model,

2. a better parameterization method for the fitting splines so that more

reliable and more accurate spline surfaces can be generated during the

fitting process.

Note that any sound automation not only reduces the cost of producing a

surface model (in terms of computer time and manpower), but also eliminates

6
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potential human errors in the process. Therefore, automation is not only an

efficiency issue but also am accuracy one. Our goal is to have a program that

takes an error tolerance and 4 corner points (in the digitized data set) and

produces the simplest spline surface (it can) that fits the data set within the

given error tolerance. Technically, we would like to solve the following three

mathematical problems:

. Fit the boundary points by a moving spline frame so that one does not

have to fit the boundary points by 4 spline curves which are bonded

together by CAGD programs. The reason is that additional errors

result from the so-called stitching process (in "SURFACER"). What

we want is to design a program that takes an error tolerance and four

corner points and produces a closed spline curve with 4 corner points

(which we call a spline frame). One possible approach is to use spline

surve fitting with interpolation of 4 corner points. However, due to

unreliability of digitized data, it is better to allow the fitting program to

decide which positions should be the corner points by using information

on positions of all boundary points. In statistical terms, we want to

use all boundary points to predict the corner points. This will make

the program more robust.

. Use a natural parametric space for the digitized surface. For example, it

is natural to use cylindrical coordinates for fuselage, conical coordinates

for the sharp front of an aircraft, and rectangular coordinates for wings.

From our experiments, an appropriate choice of the parametric space

can make a dramatic difference in accuracy of the fitting process and

can prevent some undesirable side-effects, such as the drifting of the

fitting spline surface in some coordinate direction.

, Use inverse Gordan-Coons mapping to reformulate the fitting problem

as a fitting problem on a rectangular region. The current practice is to

use the Gordan-Coons mapping instead of the inverse Gordan-Coons

mapping. For example, suppose that we have a set of data points

{(xi, y_, z_) : i < i < n}, where z_ = f(x_, y_) for some unknown func-

tion f(x, y) and (x_, y_) are uniformly distributed in some region S. One

can imagine that S is the projection (or shadow) of a wing. By using

4 boundary curve representation of the boundary points of the given

data set, one can explicitly write down the Gordan-Coons mapping that

7
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maps [0, 1] × [0, 1] to S. If we want to produce a surface model of the

wing by the parametric equations: x = z(u,v),y = y(u,v),z= z(u,v)

for 0 < u < 1, 0 < v < 1, then z_ should equal z(u_, v_) where (ui, v_)

should be determined by x_ = x(u_,v_) and y_ = y(u_, v_). Note that

x = x(u, v), y = y(u, v) define the Gordan-Coons mapping that maps

[0, 1] x [0, 1] to S. Therefore, (u_, v,) is the image of the inverse Gordan-

Coons mapping. Finding (u_, v_) involves solving a system of two non-

linear equations, which should not be too difficult. But a common

practice is to use a grid net of the rectangular region [0, 1] x [0, 1]

and, for each (u,,v,), find a data point (x_(,.,),y_(s,,)) that is clos-

est to (x(us,v,),y(u,,v_)). Then fit (u,,v_,z,(,,_)) by a spline surface

z = z(u, v). One can clearly see that artificial errors are introduced in

this process.
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Chapter 2

Differentiable Piecewise

Quadratic Exact Penalty

Functions for Quadratic

Programs with Simple Bound

Constraints

The quadratic program with simple bound constraints is reformulated as

unconstrained minimization of a differentiable piecewise quadratic function.

The two problems have the same set of local solutions, the same set of iso-

lated local solutions, and the same set of global solutions. Unlike other

penalty functions, a parameter involved in the unconstrained reformulation

can be easily determined by the spectrum radius of the Hessian of the objec-

tive function in the original quadratic program. Moreover, the exact penalty

function can also be derived from Hestenes-Powell-RockMellax's augmented

Lagrangian function for two-sided inequality constrained minimization prob-

lems by using Fletcher's multiplier function.

we,
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2.1 Introduction

Consider the following quadratic program with simple bound constraints:

rain lxT Mx -- bT x,l<x<u
(2.1)

where M is an n × n symmetric matrix, b E R" (a vector of n components),

and l, u are vectors of n components with l < u. (Note that, if l_ = u_, then

x_ -- l_ and one can replace x_ by l_ in (2.1) and reformulate the problem so

that l < u.) Some components of l or u may be -oo or q-oo.

One can take advantage of the special structure of (2.1) to design numer-

ical algorithms for solving (2.1) [1, 3, 4, 5, 6, 7, 8, 9, 11, 8, 16, 9, 18, 13,

14, 22, 23, 24, 28, 19, 20, 24, 34, 19, 36, 41, 42, 21, 44, 45, 50, 51, 26]. The

article by Mor_ and Toraldo [42] contains references on quadratic programs

with simple bound constraints in engineering applications.

When M is positive semidefinite, Li and Swetits reformulated (2.1 i as the

following unconstrained minimization problem [24, 25]:

rain k_o(X), (2.2)
xeR"

where _0(x) is a convex quadratic spline defined as follows:

• := E% -

+½[[(Z-(Ex + h))+[[2+ ½1[((Ex+ h) - u)+[[2.
(2.3)

Here a is a positive constant such that 0 <  IIMll < 1, IIMll is the 2-norm

of the matrix M, E := I - aM, and h := orb. It was proved that x* is a

solution to (2.1) if and only if x* is a minimizer of _0(z) [24, 25]. Therefore,

algorithms for unconstrained minimization of the convex quadratic spline

k_0(x) can be used to find a solution to (2.1).

When M is a positive definite matrix, _0(x) is actually a strictly convex

quadratic spline. In this case, one can use either a Newton method with line

search to find the unique solution x* of (2.1) in finite iterations [24, 25] or a

conjugate gradient method to generate a sequence of iterates which converge

linearly to x* [20]. Moreover, the conjugate gradient method finds x* in finite

iterations if x* is nondegenerate [20]. In general, it is very easy to design

a linearly convergent descent method for finding a minimizer of a convex

12
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quadratic spline which is bounded below on R ", even if the set of minimizers

of the convex quadratic spline is unbounded [19]. As a consequence, by

the unconstrained reformulation (2.2), one can easily generate a sequence of

iterates which converges linearly to a solution of (2.1) when M is positive

semidefinite and (2.1) has a solution [19].

The unconstrained reformulation of (2.1) was solely based on the obser-

vation that x* is a stationary point cf g0(x) (i.e., _(x*) = 0) if and only if

x* satisfies the first order optimality conditions of (2.1) (i.e., (x*,Mx* - b)

is a Karush-guhn-Tucker point of (2.1)) [24, 25]. Therefore, it is unclear

whether the minimizers of gl0(x) correspond to the solutions of (2.1) when

M is not positive semidefinite. In order to establish the correspondence with-

out the convexity assumption, we have to relate the second order optimality

conditions of (2.1) to those of (2.2).

When 0 < 2al[M[[ < 1, based on careful manipulations of the second

order optimality conditions and an observation that g0(x) is actually the

sum of the objective function of (2.1) and a quadratic spline penalty term,

we prove that x* is a local solution (or an isolated local solution) of (2.1)

if and only if x* is a local minimizer (or an isolated local minimizer) of

g0(x). Moreover, x* is a global solution of (2.I) if and only if x* is a global

minimizer of g0(x). In other words, the unconstrained reformulation (2.2)

is "absolutely" equivalent to (2.1) when 0 < 2a[IM][ < i. We want to point

out that k_0(x) can also be derived from the Hestenes-Powell-Rockafellar's

augmented Lagrangian function for two-sided inequality constraints by using

Fletcher's multiplier function. See Section 2 for details.

In general, one can use exact penalty functions or exact augmented La-

grangian functions to derive unconstrained reformulations of a constrained

minimization problem (cf. [3, 13]). Consider the following constrained mini-

mization problem:

min f(x), (2.4)
aEX

where X C R" is the feasible set defined by some linear or nonlinear con-

straints. In order to reformulate (2.4) as an unconstrained minimization

problem, we introduce an exact penalty function F(x, e) which contains a

penalty parameter e and consider the following unconstrained minimization

problem:

min F(x, e). (2.5)
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The most importa_at property of an exact penalty function is that its local (or

global) minimizers are local (or global) solutions of the original constrained

minimization problem, which is the main focus of most of the literature on

this subject as noted by Han and Mangasarian [16]. This property ensures

that any unconstrained minimization technique for finding a local (or global)

minimizer of the penalty function yields a local (or global) solution of the

original constrained problem. Usually, there is a threshold _* for the penalty

parameter such that F(x, e) is exact if 0 < e < e*. However, in almost all

cases, there is no simple way to compute the value of e*. Also, as pointed

out by Di Pillo and Grippo [13], in practice, the threshold e* could only be

established with reference to some compact subset 23 of R ". That is, in

practice, one could only get a threshold e* such that, for 0 < e < e*, F(x, e)

is exact for x in :D. In order to measure the degree of exactness of a penalty

function, formal definitions of exactness were introduced by Di Pillo and

Grippo [13]. By Di Pillo and Grippo's definition [13], for 0 < 2c_[[M[[ < 1,

kg0(x) is a strongly exact penalty function for (2.1) with respect to the set

23=_R _.

There axe two other unconstrained reformulations of (2.1) given by Grippo

and Lucidi [13] and by Coleman and Hulbert [5], respectively. Both refor-

mulations axe only valid for the case that the feasible region {x : l _< x < u}

is compact.

In [13], Grippo and Lucidi started from the definition of differentiable

multiplier functions that yield an estimate of the Karush-Kuhn-Tucker mul-

tipliers as explicit functions of x. Then they constructed a penalty function

P(x, e) containing barrier terms on a perturbation of the constraints. The

penalty function P(x, e) is a differenti_.ble piecewise rational function in an

open neighborhood 23 of the compact feasible region {x : l < x < u}. The

definition of the threshold e* involves the maximum value of [[Mx - b[[oo (the

supremum norm of the vector (Mx - b)) over the feasible region {x : l _<

x < u} and the maximum value of some nonlinear expression of x and e.

For 0 < e < e*, they proved that x* is a global minimizer of P(x, e) in 23 if

and only if x* is a global solution of (2.1). Moreover, any local minimizer

x* of P(x, e) is a local solution of (2.1). The converse is also true when

(x*, Mx* - b) is a Karush-Kuhn-Tucker point satisfying strict complemen-

tarity conditions. In a separate paper [14], based on the penalty function

P(x, e), they proposed Newton-type algorithms to solve (2.1). Under suit-

able assumptions, finite termination of a Newton method was established.

14
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Grippo and Lucidi's approach was adapted to tackle unbounded feasible sets

by Facchinei azid Lucidi in [9].

Coleman and Hulbert's penalty function is a nondifferentiable piecewise

quadratic function. They started with an gl penalty term and the transform

y := -(Mx - b) that yield a penalty function f(y). Under the assumption

that M is positive definite and the unique solution x* of (2.1) is nondegener-

ate, they proved that a Newton-type method generates a sequence of iterates

{yk} which converge superlinearly to y* := -(Mx* - b) [5]. Note that one

has to solve the linear system Mx = (b- y*) in order to get the solution x*.

One interesting feature of Coleman aad Hulbert's penalty function is that

there is no penalty paraxneter involved.

In comparison with Grippo and Lucidi's penalty function P(x, e) and

Coleman and Hulbert's penalty function f(y), gJo(X) is simpler than P(x, e):

a differentiable piecewise quadratic function versus a differentiable piecewise

rational function; _0(z) is "smoother" than P(x, e) or f(v): differentiability

on R _ versus singularity of P(x, e) on the boundary of _D (induced by the

b rrier terms) or nondifferentiability of f(u);  0(x) is "more exact" than
P(x, e) or f(y): equivalence of local solutions without strict complementarity

conditions for 6/0 (x) versus with strict complementarity conditions for P (x, e)

or with strict convexity assumption on (2.1) for f(y); the penalty pararneter

for _o(X) is easier to compute than that for P(x, e): the trivial estimate of the

threshold versus the complicated estimate of the threshold by maximization

of linear and nonlinear functions; g20(x) preserves the convexity of the original

minimization problem (i.e., if the original quadratic program (2.1) is convex,

then _0(x) is also convex), while P(x, e) or f(y) does not; _0(z) is valid for

any feasible set while P(x, e) or f(y) is only defined for compact feasible sets.

The paper is organized as follows. In Section 2, we outline how (2.1)

can be reformulated as unconstrained minimization of a quadratic spline

penalty function _(x) and show that the penalty function _(x) can be
derived from Hestenes-Powell-Rockafellar's augmented Lagrangian function

by using Fletcher's multiplier function. An importarit relation between the

penalty function _(x) and the objective function of (2.1) is also given. In

Section 3, we relate the second order optimality conditions for (2.1) to those

for unconstrained minimization of _(x). In Section 4, we prove that (2.1)

and the unconstrained reformulation has the same set of local solutions, the

same set of isolated local solutions, and the same set of global solutions.

Conclusions and final remarks are given in Section 5.

15



!

rO ,

L

M

.,t==

m

u

E_r

Now we conclude this section by giving some terminologies and notations

used in the paper.

For simplicity, we use f'(x) to denote the gradient of f(x) (as a column

vector) and use f"(x) to denote the Hessian of f(x). A real-valued function

f(x) on R" is said to be a quadratic spline, if the gradient f'(z) of f(x) is

a piecewise linear mapping from R" to R". That is, a quadratic spline is a

continuously differentiable piecewise quadratic function. The 2-norm ]l" l[ on

R'* is defined as IlxII := (__-a"--1z_) ] and the 2-norm of an n x n matrix B is

defined as IIB][ := sup{IIBxl[ : x • R" with [[xll = 1}. The transpose of a

matrix B or a vector x is denoted by B T or x T. For z, y • R'*, x < y means

xi _< yi for 1 < i < n, where zi or yi denotes the i-th component of x or y.

Let (z), (or (z) _) be the lower (or upper) truncation of z by l (or u) whose

i-th component is max{ll, zl} (or min{u,, z,}). By convention, z+ is a vector

whose i-th component is max{zi, 0}. For convenience, we use A to denote a

diagonal matrix whose diagonal entries are either 0 or 1. The n x n identity

matrix is written as I and A_ := I - A. A vector x* • X is said to be a local

solution of (2.4) if there exists a positive constant 8 such that f(x) >_ f(x*)

for x • X with lIx - x* I[ -< _. A vector z* • X is said to be a isolated local

solution of (2.4) if there exists a positive constant 8 such that f(x) > f(x*)

for x • X and 0 < [[x-x*[[ _< 6. Avectorx* • Xis said to beaglobal

solution of (2.4) if f(x) > f(x*) for all x • X.

2.2 Unconstrained Reformulations

In this section we outline how the quadratic program with simple bound

constraints, (2.1), can be reformulated as unconstrained minimization of a

quadratic spline _(x) [24, 25], and show that _(x) can be derived from

the Hestenes-Powell-R.ockMellaz's augmented Lagrangian function by using

Fletcher's multiplier function. Finally, an important relation between @(x)

and the objective function of (2.1) is given.
It is well-known from the Karush-Kuhn-Tucker conditions that if x is a
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solution of (2.1), then there exists w E R" such that, for 1 < i < n,

Mx-b-w = 0,

xi=Ii if w_>0,

xi=ul if wi<0,

l_<_z_<_u_ if w_=0.

(2.6)

One can verify that (x*,w*)is a solution of (2.6) if and only

w* = Mx* - b and x* = (x* - aw*)_', (2.7)

where c_ is any positive constant (cf. [25]). By substituting w* = Mx* - b

into (2.7), we observe that (2.6) is equivalent to a system of piecewise linear

equations. However, by multiplying a special nonsingular matrix on both

sides of (2.7), one can prove that (2.7) is equivalent to the normal equation

of a quadratic spline (cf. [25]). The following reformulation of (2.1) follows

from Theorem 2.6 in [25].

Lemma 1 Suppose that M is a symmetric matrix. Then (x*, Mx* - b) is a

Karush-guhn-Tucker point for (2.1) if and only if x* satisfies the following

piecewise linear equation:

x = (E_ + h)_', (2.8)

where E := I - aM, o_ is any positive constant, and h := ab. Moreover,

_E(x - (Ex q- h)r ) is the gradient of the following quadratic spline

_(x) := _:(E- E_)_- -_:Eh- _llbl[_ (2.9)
+_ll(l-(Ex+ h))+:+ _II((E_+ h)- _)+II_.

As a consequence, forO < c_HMH< 1, (x*,Mx*-b) is a Karush-Kuhn-Tucker

point of (2.1) if and only if qt'(x*) = O.

Remark. Reformulation of (2.6) as a system of piecewise linear equations

x = (Ex + h)_ is a generalization of Mangasarian's idea of reformulating a

linear complementarity problem as a system of piecewise linear equations.

Mangasarian's reformulation led to matrix splitting algorithms for solving

the linear complementarity problem [27].
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1 and also add an extraNote that we scale the original _0(x) in (2.2) by

term -_[[b[[ 2. Lemma I, not including the last statement, follows directly

from Theorem 2.6 in [25]. When 0 < a[[M][ < 1, E := I - aM is a positive

definite matrix. Therefore, _'(x*) = 0 if and only if _E(x*-(Ex*+ h)'_) = O,

which is equivalent to x*-(Ex*+h)_ = O. From the first statement of Lemma

1 we know that _'(x*) = 0 if and only if (x*, Mx* - b) is a Kaxush-Kuhn-

Tucker point of (2.1).

Now let us consider the following unconstrained minimization problem:

min _(x), (2.10)
_ER n

which is equivalent to (2.2). If M is positive semidefinite and 0 <  IIMII < 1,

then _(x) is a convex function. As a consequence, x* is a solution of (2.1)

if and only if x* is a minimizer of _(z). Therefore, (2.1) can be reformu-

lated as the unconstrained minimization problem (2.10) when M is positive

semidefinite. However, the reformulation only preserves the first order opti-

mality conditions. When M is not positive semidefinite, it becomes difficult

to relate the second order optimality conditions for (2.1) with the second

order optimality conditions for (2.10). Since (2.9) does not clearly show how

qy(x) is related to the original objective function ½xTMx -- bTx and the con-

stra/nts l < x g u, we rewrite k_(x) by substituting E = I - aM and h = ab

into (2.9). Using simple algebraic manipulations, one can get the following

explicit formula for _(x).

Lemma 2 For any a > O,

_(x) = (_xTMz -- bTx) --  II(M - b)[I _

÷_ ((l-x)-bo_(Mx-b))+ 2+_ ((x-u)-a(Mx-b))+ 2.

Remark. The above penalty function can also be derived from Hestenes-

Powell-Rockafellax's quadratic augmented Lagrangian function. Consider the

following constrained minimization problem:

min f(x) subject to l <_ g(x) <_ u, (2.11)
X

18
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where f : R '_ _ R and g : R _ --_ R _ axe twice continuously differentiable

functions. The corresponding augmented Lagrangian function L(x, y, a) in-

troduced independently by Hestenes [17, 18] and Powell [29] for equality con-

str_nts and by Rockafellax [30, 31] for inequality constraints can be written

in the following unified way:

 /+lt
)l2+_ (l- g(_))- y + - :11II,

(2.12)

where y is the Lagrangian multiplier corresponding to two-sided inequality

constraints and a is a penalty parameter. If f(x) = }xTMx -- bTx and

g(x) = x, then the corresponding augmented Lagrangian function ha_ the

following expression:

+_ (_(l- _) - _)+ _- _llyl[:
(2.13)

Note that the Lagrange multiplier y in (2.13) should satisfy the following

equation:

y=-(Mx-b). (2.14)

As a consequence, we have the following relation between _(x) and the aug-

merited Lagrangian function L(z, y, a):

c2(x) - L(x,-(Mx - b),a). (2.15)

This is actually Fletcher's idea of getting an exact penalty function depending

only on x [10]. For example, suppose the gradients

{g_ (x), g_(x), . . . , g_ (x) )

of the constraints are linearly independent for any x. Let g_(x) be the n × m

matrix whose i-th column is the gradient g_(x) of g_(x). Then the Lagrangian

multiplier y in (2.12) should satisfy the following equation:

f'(x)+g'(x)y----O. (2.16)
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If (2.16) has a solution y(x), then y(x) has the following expression:

y(x) = - ((g'(x)Tg'(x)) -1 (g'(x)) T f'(x),

which is Fletcher's multiplier estimate. The function L(x, y(x), a) can be

used as an exact penalty function for the two-sided inequality constrained

minimization problem [31]. Fletcher [10] initially used y(x) to eliminate the

Lagrangian multiplier in the augmented Lagrangian function for equality

constrained minimization problems. Our derivation of the penalty function

• (x) indicates that Fletcher's idea can also be used for inequality constrained

minimization problem. It is interesting to notice that, if we can solve the

equation (2.16) to get a unique solution x(y), then n(x(y),y,a)is a penalty

function depending only on y. The unconstrained reformulation of strictly

convex quadratic program given in [24, 25] cam be derived in this way [31].

Now, one may consider that _(x) is the sum of the objective function

ixT Mx _ bT x
2

and a quadratic spline penalty term

__, 1 a(Mx b))+ 2P(_) := _II(M_- b)ll=+ _ [[((l- x) + -

+_ ((x- u)- a(Mx- b))+ 2.

(2.i7)

The penalty function has some important properties that relate _(x) to the

objective function of (2.1).

Lemma 3 For any a > O,

for x E R '_ with l <_ x <_ u. (2.18)

Moreover,the equalityin (2.18)holdsif (x,Mx-b) is a Karush-Kuhn-Tucker
point of (2.1).

Proof. Let l < x G u. Define J_ := {i: ((l- x) + o_(Mx - b)), > 0}. Then,

for i E J1,

(a(Mx - b)), >_ ((l- x) + a(Mx - b)), > 0

2O
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and

((x - u) - o_(Mx - b)), = (l- u), - ((l- x) + a(Mx - b)), < O.

Thus,

a2(Mx - b)_ >_ (((l- x) + a(Mx - b))+)_
(2.19)

+ (((z - u) - a(Mx - b))+)_.

Similarly, for i E J2 := {i: ((x - u) - a(Mx - b)), > 0), (2.19) holds. The

above argument also shows that

((l- x) q- a(Mx - b))T((x -- u) -- a(Mx - b))+ = 0 (2.20)

and J_ N J2 = ¢ (i.e., J_ and J_ are disjoint). Therefore, by (2.19),

P(x) = -_ E,"=I(MX - b)_ + _ E,eJ, (((l- x) + o_(Mx - b))+)_

1 __ ot __+_F-.ieJ2 (((x - u) - a(Mx - b))+)_ < -_ _]iaj_uj2(Mx - b)_ < 0.

Thus, for l < x _< u,

Now suppose that (x,Mx - b) is a Karush-Kuhn-Tucker point of (2.1). It

follows from (2.20) that

((l-x)+°L(Mx-b))+l_+_ ((x-u)-°_(Mx-b))+ 2 (2.21)

= _ ((l- x) + o_(Mx - b))+ - ((x - u) - o_(Mx - b))+ 2.

One can easily verify that z_' = z + (l- z)+ - (z - u)+ for any z E R". Let

z := x - o_(Mx - b) =- Ex + h. Then

((l- x) + o_(Mx - b))+ - ((x - u) - a(Mx - b))+

= (Ex + h)' t - (Ex + h) = a(Mx - b),
(2.22)

because (Ex + h)_'- x = 0 by Lemma 1. By (2.21) and (2.22), P(x) = 0 and

the equality holds in (2.18). •
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2.3 Second Order Optimality Conditions

All the results in this section axe attempts to establish relationships between

the second order optimality conditions of (2.1) and (2.10).

From the definition of k_(x) it is easy to verify that, if 9(.) is twice

differentiable at x, then the Hessian _"(x) has the following expression:

• "(x) = I(E- EAE), (2.23)

where A := diag(A1,..., A,) with

1, if l_ < (Ex + h)_ < u_0, otherwise.

Even in the case that 9(.) is not differentiable at x, we still have a similar

expression.

Theorem 4 Suppose that (x*,Mx*-b) is a Karush-Kuhn-Tucker point of

(2.1). Then there exists a positive constant 5 such that, for any x E R '_ with

Six- x']l <_8,

• (x)- _(x')= l(x2a - x*)T(E - EAE)(x - x*), (2.24)

where A := diag(Al,...,A,) with

1, if l_ < (Ex*-t- h)_ < u_

1, if l_ = (Ex* + h), and (E(x - x*)), > 0
_ := - (2.25)

1, if u, = (Ex* + h), and (E(x- x*)), <_ 0

0, otherwise.

Proof. There exists a positive constant 5 such that

l_ < (Ex + h)_ < u_, ifI_<(Ex*+h)_<ui,

I_ > (Ex + h)_, if I_ > (Ex* + h)_, (2.26)

u, < (Ex + h),, if u, < (Ex* + h),,

22
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whenever IIx - x*l[ _< 8. Let llx - x*l[ _< 8 and h := diag(A_,... ,.k,) with _,

given in (2.25). Then, for xe := _x + (1 -_)x* with 0 < _ _< 1, g(_) := _(xe)

is a differentiable function of _ and

g'(0) = (=-
= _(x - z*)T(Ezo- E(Eze + h)r )

= _(x - x*)T(Exe- EA(Eze + h) - EA,(Ex* + h)r ),

where the last equality follows from the definition of A. Thus, for 0 _< O _< i,

• (xo) is a quadratic polynomial of O and

g"(O) = -_1(z- x*)T(E -- EAE)(x - x*)

By the Taylor expansion and _'(x*) = 0, we have

1 It
_(x) - _(x*) = g(1) - g(0) = g'(0) + _g (0)

= (z - x*)T_'(z *) + _(x -- x*)T(E- EAE)(x - x*)

= _(x - x*)T(E -- EAE)(x - x*). •

Note that the Hessian of the objective function of (2.1) is M. Therefore,

in order to relate the second order optimality conditions of (2.1) to those of

(2.10), we have to study how (E - EAE) is related to M.

R.ecall that we use A to denote a diagonal matrix whose diagonal entries

are either 0 or 1, and A_ = I - A. Since E = I - c_M, by simple algebraic

manipulations, one can verify the following matrix identities.

Lemma 5 For any a,

E - EAE = A_ - aA_MA_ + o_(AMA - otMAM) (2.27)

and
EAMAE = AMA - aMAM - a(AMA) 2

+aA_MAMA_ + a2(MAMAM).
(2.28)

In order to derive the second order optimality conditions of (2.I0) from

those of (2.1), we give a lower bound estimate of xT(E -- EAE)x. This

estimate will allow us to prove that local solutions (or isolated local solutions)

of (2.1) ave also local minimizers (or isolated local minimizers) of _(z).
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Lemma 6 Suppose that 0 < 2al[M[[ < 1. Then there exist a positive con-

stant fl such that

xr(E - EAE)x ___(llhoxl[:+ I[hMnxll_)+ _xTEAMAEx. (2.29)

Proof. By the definition of the 2-norm of an n × n matrix Q, for any y E R _,

we have

IIQyll-<IIQI[I[yI[. (2.30)

By (2.30) and the Cauchy-Schwaxz inequality, we get

yTQy <_ [[yI[[[QyI[ <-[[Ql[l[y][2 (2.31)

Let 7 be any positive number. Then

][A/xl[ 2 = [[AMAx + A/A_x[[ _

< ([IAMAzII + HAMA_zI[)2

-< ([IAMAxI[ + HAI[IIMA_xI[)2 (2.32)

_< ([[AMAx[[ + [[M[[[[A_x[[) u

= [[AMAx[[ 2 + ][MH2[[A_x[[ 2 + 2][M[[][A_xI[[[AMAx[[

< (1+ z-1)llhMh_l(_+ ][M]I_(1+ _)IIA_II:,

where the first inequality is by the triangle inequality, the second inequality

is from (2.30), the third inequality follows from (2.30) and [[A[[ _< I, and

the last inequality follows from 2st _< "),-Is 2 + _/t :. By (2.31) and (2.32) we

obtain that

a3xTMAMAMx <- °_3][MIIIIAMx][2 (2.33)

_< _3[[M][ ((1 + 7-_)[[AMAx[[ 2 + [[M[[2(I + 3')][A_x[[2) •

Similaxly, by (2.31), (2.30), and [[A[[ _< i, we can derive that

axTA_MA_x < al[Ml[][A_x[[ 2 (2.34)

and

o_2zTA_MAMA_x <_ o_2][MI[2I[A_xI[ 2. (2.35)
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By (2.27) and (2.28), we obtain that

xT(E -- EAE)x - o_xTEAMAEx = xTA_x -- o_xTA_MA,x

+c_2xT(AMA)2x - c?xTA,MAMA_x - _3xTMAMAMx.
(2.36)

Finally, by (2.36), (2.33), (2.34), and (2.35), we get the following estimate:

Let

and

xT(E --EAE)x k (1- o_l[m[[-,_2[[Ml[2- o?lIm[[3(1+ _,))[[A=x[[2
+_2(1- _[[MII(1+ 7-I))HAMAxII2+ axTEAMAEz.

(2.37)

1( _[IMI[ +I-2_IIMII+_4IIMI[ 4)7 := { 1- _IIM[I _IIMII_(I- _IIMI[)

:= min{1 - _[[M[[- a21IMll 2 - a31[M][a(1 + 7), oz2(1 - a][M[[(1 + "y-a))}.

Since 0 < 2_[[MI[ < 1, one can verify that

0 < _I[M[[ < _' < 1 - 2a]IMII + a4lIM[[ 4 (2.38)
1 - a][M[I a3I[MIp(1 - a]IM[[)

Since

I - aHMH - a211M][2 - o_31IMt[3( 1 +7)=
1 - 2_IIMI[ ÷ _[IMI[ 4

1 - _IIMI[
-_311Mll3,

it is easy to verify that (2.38) implies that/3 > 0. Finally, (2.29) follows from

(2.37). •

2.4 Equivalence of The Quadratic Program

and Its Unconstrained Reformulation

By using characterizations of local solutions and isolated local solutions of

(2.1), we prove that a local solution (or an isolated local solution) of (2.1) is

also a local minimizer (or an isolated local minimizer) of _(x). By Lemma

3, it is easy to show that the converse also holds. Moreover, x* is a global

solution of (2.1) if and only if x* is a global minimizer of _(x).
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Lemma 7 [37] Let (x*,Mx*-b) be a Karush-Kuhn-Tucker point of (2.1).

Then x* is a local solution of (2.1) if and only if £cTM_c >_ 0 for _ E R '_

which satisfies the following conditions:

2,_ > O,

_ < O,

if (Ez" + h), < l, or (Ex* + h), > u,

if li = (Ex* + h)i

if u_ = (Ez* + h)_.

Lemma 8 [39] Let (x*,Mx*-b) be a Karush-Kuhn-Tucker point of (2.1).

Then x* is an isolated local solution of (2.1) if and only if _:rM_ > 0 for

any nonzero vector _ in R '_ which satisfies the following conditions:

_=0, if(Ex*+h)_<lior(Ex*+h)_>u_

_>_0, ifl_=(Ex*+h)_

__<0, ifu_=(Ex*+h)i.

Remark. The condition given in Lemma 7 is a special case of McCormick's

second order necessary condition for a local minima and the condition given

in Lemma 8 is a special case of McCormick's second order sufficient condition

for a local minima [40].

Theorem O Suppose that 0 < 2a[[M H < I. If x* is a local solution (or an

isolated local solution) of (2.1), then x* is a local minimizer (or an isolated

local minimizer) of _(x).

Proof. If x* is a local solution (or an isolated local solution) of (2.1), then

(x*, Mx* - b) satisfies the Karush-Kuhn-Tucker conditions. By Theorem 4,

there exist positive constants $ and fl such that (2.24) and (2.29) hold. Let

x E R _ with 0 < ]]x- x*[l _< 5.

Note that x* is always a local solution of (2.1). (An isolated local solution

is a local solution.) By Lemma 7 and the definition of A in (2.25), for

:= AS(x - x*), we have _TM_ >_ 0; i.e., (x -- x*)TEAMAE(x - x*) >_ O.

By (2.24) and (2.29),

_l/(x)- q/(x*) _> 2-_(][AMA(x- x*)l] 2 + IIh_(x - x*)]] 2) _> 0. (2.39)
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Therefore, z* is a locl minimizer of ¢(x).

Now assume that z* is an isolated loci solution of (2.1). We want to

show that _(x)- k_(x*) > 0. If A_(x - x*) _ 0 or AMA(x - x*) :_ 0, then it

follows from (2.39) that k_(x) - _(x*) > 0. Otherwise,

AE(x - x*) = A(I- o_M)(x - x*) = A(I - c_M)A(x - x*) = A(x - x*).

Since x - x* _ 0 and A_(x- x*) = 0, we get AE(x- x*) = A(x - x*) _ 0.

By Lemma 8 and the definition of A in (2.25), for _ := AE(x - z*), we have

_TMi. > 0; i.e., (x- x*)TEAMAE(x - x*) > 0. Therefore, by (2.24) and

(2.29), _(z) - _(x*)> 0. Hence, x* is an isolated locl minimizer of _(x).

Theorem 10 Suppose that 0 < _IIMII < 1. If _" is a local minimizer (or an

isolated local minimizer) of kv(z), then x" is a lo_al solutio_ (or an isolated

local solution) of (_.1).

Proof. Let f(x) := ½xTMx -- bTx. Since x* is a locl minimizer of @(x),

k_'(x*) = 0 and there exists a positive constant 6 such that

_(x) > kg(x*) for x E R" with 0 < I1_- _'11 -<_. (2.40)

By Lemma I, (x',Mx* - b) is a Zarush-Kuhn-Tucker point of (2.1). Thus,

by Lemma 3, _(x*) = f(x*). It follows from Lemma 3 that

f(x) > k_(x) >_ _(x*)= f(x*),

whenever0 < I1_- _'11-<6 and l _<• < u. Therefore,x" is a local solution
of(2.1).

If x* is an isolated locl minimizer of kv(x), then the strict inequality

holds in (2.40) and, as a consequence,

f(x) >___(x) > k_(x*) = f(x*)

whenever0 < I1_- _'lI < _ and l < • < u. Therefore,x* is an isolated local
solution of (2.1). •

Finally, we discuss the equivience of globi solutions of (2.1) and globi

minimizers of _(x). First we have the following implication on the existence

of globi minimizers of _(x).
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Theorem 11 Suppose that 0 < _[[M[[ < 1. If (2.1) has a global solution,

then q2(x) is bounded below on R'* and has a global minimizer.

Proof. Assume the contrary that _(x) is not bounded below on R ". Then

there exist xk's such that

Define

"""_,z_j= -c¢.lim
1¢--4 oo

\ /
(2.41)

57 := {i: (E__+ h), < l,},
J_ := {i: (E__+ h)_> _,},

Jo_ := {i: l, < (Z__+ h), < _,}.

Since the index set {1, 2,..., n} has finitely many different subsets, we can

select a subsequence {k j) such that J_'- J_, J_J-= J_, and Joki - Jok_.

Without loss of generality, we may replace the sequence by the subsequence

and assume that there exist three subsets Jl, J_, and J0 of {I, 2,..., n} such

that, for all k,

Jz= {i: (E_k+ h), < Id,
J_ = {i: (Ex k + h), >_ u,}, (2.42)

Jo = {i: l_ < (Ex k + h)_ < u_}.

Let A := diag(A1,..., A,), where

i_:={ 1, ifiEJoO, otherwise.

Since E is nonsingular, there exists x ° 6 R '_ such that

(Ez ° + h)_ = li, if i E J_,

(Ez ° + h)_ = u_, if i 6 J_,

(Ex ° + h)_ = (Ex _ + h). ifi6J0.

(2.43)

Similarly as in the proof of Theorem 4, kg(6z k + (1 - 8)x °) is a quadratic

function of 8 for 0 < 8 < 1 and

ql(xk)-_(x °) = (xk--x°)Tq/(x°)+l (zk-z°)T(E-EAE)(xk--x°). (2.44)
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By Lemma 6, there exists a positive constant _ such that

_(xl k .... xO)T(E EAE)(xk x0)>_l[A_(zk z0)[t2

+_IIAMA(x k - x°)l[ 2 + _(x k - xO)TEAMAE(x k - x°).

(2.45)

In the remaining part of the proof, we want to show that

(xk_ xO)r ,(x0)+ l(x _ z°)T EAMAE(x k - X ° )

is bounded below by a linear function of (A_(x k - z°)) and (AMA(x k- x°)).

As a consequence, _(x k) is bounded below by a strictly convex quadratic

function of (A_(x k - x°)) and (AMA(x k - x°)).

Sincel<(Ez ° + h) < u and l G (Ex ° + h) + AE(x k - x °) G u, we have

a_'(x °) = E(x ° - (Ez ° + h)'{) = E(x ° - (Ex ° + h)) = aE(Mx ° - b) (2.46)

and

-oo < t¢ < f((Ex ° + h) + AE(x k- z°)) - f(Ex ° + h)

= (x k - z°)TEA(M(Ex ° + h) - b)

+ l(xk - xO)TEAMAE(x k - x°),

(2.47)

where f(z) := ½xTMx - bTx, tc := inft_<_,_<_,f(x) - f(Ex ° + h), and the

equality in (2.47) is the Taylor expansion for f(z). By (2.46) and

we get

M(Ex ° + h) - b = E(Mx ° - b),

q2'(x °) - EA(M(Ez ° + h) - b) = (E - EAE)(Mx ° - b). (2.48)

By simple algebraic manipulations, one can derive from (2.27) that

E - EAE = A_(EA, - cr2MAM) + ctAMAE. (2.49)

It follows from (2.48) and (2.49) that

(x k - x°)Tk_'(x °) -- (x k -- x°)TEA(M(Ex ° + h) - b)
(2.50)

= pTAc(xk -- x °) + qTAMA(xk - x°),
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where p := (EA_-_2MAM)(Mx ° -b) and q := _E(Mx °- b). From (2.47)

and (2.50) we obtain

1 k
(x k - x°)T_'(x °) + i(x -- x°)TEAMAE(x k - x °)

>_ pTA_(x k -- x °) + qTAMA(xk - x °) + oea.
(2.51)

Finally, by (2.44), (2.45), and (2.51), we obtain that

_(x k) - _(x °) > h(A_(x - x°),AMA(x - x°)),

where
23

h(y,z):= _(llyll _+ Ilzll_)+ pTy+ qr, + _.

Since h(y,z) is a strictly convex quadratic function of (y,z), there exists

a constant r/ such that h(y,z) >_ _7 for all y, z E R ". As a consequence,

k_(x k) > kV(x °) + 77> -co. The contradiction proves that _(x) is bounded

below on R _.

By Frank-Wolfe Theorem [9, 6], if a piecewise quadratic function is bounded

below on R", it has a global minimizer. Therefore, _(x) has a global mini-

mizer. •

E

m

W
m

=.

Theorem 12 Let 0 < o41MIl< x. Thenx* i_ a gZobaZ_oZ_tionof (2.1) if

and only if x* is a global minimizer of k_(x).

Proof.. Assume that x* is a global solution of (2.1). Then (z*,Mz*-b) is a

gaxush-Kuhn-Tucker point of (2.1) and, by Lemma 3, _(x*)= f(x*), where

f(x) := _zTMx -- bTx. By Theorem 11, kV(x) also has a global minimizer _.

Since q/'(k) = 0, by Lemmas 1 and 3, (k, Mk - b) is a Karush-Kuhn-Wucker

point of (2.1) and

qy(&.) = f(_) > f(x*) = qy(x*).

Thus, x* is a global minimizer of _(x).

Now suppose that x* is a global minimizer of _(x). By Lemma 3, f(x*) =

_(x*) and

f(x)>_qY(x)>__(x*)-f(x*) forx•l_ =withl_<x_<u.

Therefore, x* is also a global solution of (2.1). •
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2.5 Conclusions

We were able to show that, for 0 < 2c_llMII < 1, the quadratic program (2.1)
is "absolutely" equivalent to the unconstrained minimization of the quadratic

spline q(x) in every conceivable way: the two problems have the same set of

local solutions, the same set of isolated local solutions, and the same set of

global solutions. Moreover, the exac" penalty function _(x) is convex if (2.1)

is a convex quadratic program. Majthay and Mangasarian's characterizations

of local solutions [37] and isolated local solutions [39], respectively, of (2.1)

were essential in our analysis.

Since M is symmetric, IIMII1 = IIMUoo and we have the following upper

bound of IIMII:

IIMII X/IIMIIIIIMIIoo= max Im,Jl,

where mij is the (i,j) entry of M. See Section 2.2 of [19] for details. There-

fore, 0 < 2anMll < 1 if

0<_< 2. Im, l)l<{<n
- - j--I

-I

This provides a simple and explicit estimate for threshold of the penalty

parameter a.
From the discussion in Section 2, we realize that the exact penalty func-

tion q(x) could actually be derived from Hestenes-Powell-Rockafellar's aug-

mented Lagrangian function for two-sided inequality constrained problems

by using Fletcher's multiplier function. The process indicates that one may

obtain an exact penalty function by eliminating either the primal variable

z or the dual variable multiplier y from the augmented Lagrangian func-

tion by simply using the equations in the Karush-Kuhn-Tucker conditions

for the constrained minimization problem. At least the approach works for

the quadratic program with simple bound constraints. Further results for

general nonlinear programming problems can be found in [31].

Algorithms based on the exact penalty function ff;(x) to solve (2.1) were

discussed in [24, 25, 19, 20] when M is positive semidefinite. It would be

interesting to study how the exact penalty function _(x) can be used to

31
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design new numerical algorithms for solving nonconvex quadratic programs

with simple bound constraints.
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Chapter 3

A Conjugate Gradient Method

for Strictly Convex Quadratic

Programs with Simple Bound
Constraints

tm_

In this paper, we show that an analogue of the classical conjugate gradient

method converges linearly when applied to solving the problem of uncon-

strained minimization of a strictly convex quadratic spline. Since a strictly

convex quadratic prograrn with simple bound constraints can be reformu-

lated as unconstrained minimization of a strictly convex quadratic spline,

the conjugate gradient method is used to solve the unconstrained reformula-

tion and find the solution of the original quadratic program. In particular,

if the solution of the original quadratic program is nondegenerate, then the

conjugate gradient method finds the solution in finite iterations.

3.1 Introduction

Consider the following convex quadratic programming problem:

min l xTMx --bTx

subject to l < Ax <_ u,
(3.1)
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where M is an n × n symmetric positive semidefinite matrix, A is an m ×

n matrix, x,b E R '_, and l,u are vectors of m components with l_ _ u_

(some components of l, u might be 4-oo). See [19] for a survey on iterative

methods for solving (3.1). Recently, Li and Swetits reformulated (3.1) as

an unconstrained minimization problem with a convex quadratic spline as

the objective function, whenever M is positive definite or A is the identity

matrix [24, 25]. Here we say that a function f(x) is a quadratic spline if

f(x) is a differentiable piecewise quadratic function. Therefore, algorithms

for unconstrained minimization of a convex quadratic spline can be used to

solve convex quadratic programs with simple bound constraints and strictly

convex quadratic programs. In [24], a Newton method with line search was

proposed to solve (3.I) in finite iterations when M is positive definite and

the rows of A are linearly independent. Later, a modified version of the

Newton method was given in [25] which can also find the solution of (3.1) in

finite iterations, under the assumption that M is positive definite. All these

finite algorithms are based on Newton methods for solving the unconstrained

reformulation of (3.1) and can start with any initial guess. However, these

methods involve solving a linear system in each iteration. They are most

efficient for problems where M is a diagonal matrix and A has a banded

structure or other sparse patterns. For general cases, it seems a good idea

to use a "cheap" descent method for a good initial guess and then to use

a Newton method for a more accurate numerical solution of (3.1). This

leads to a genera] theory of linearly convergent descent methods for finding

a minimizer of a convex quadratic spline which is bounded below on R" [19].

It turns out that it is extremely easy to design a linearly convergent descent

method for unconstrained minimization of a convex quadratic spline, even if

the set of minimizers of the convex quadratic spline is unbounded [19]. It

is clear now that a reformulation of (3.1) as unconstrained minimization of

a convex quadratic spline allows one to develop new algorithms for solving

(3.1) [23, 24, 25, 19]. Somehow, the problem of unconstrained minimization

of a strictly convex quadratic spline is very similar to a linear system with

a symmetric positive definite matrix, while the problem of unconstrained

minimization of a convex quadratic spline is similar to a linear system with

a symmetric positive semidefinite matrix. During a discussion with J.-S.

Pang, he suggested that a conjugate gradient method might be developed

for unconstrained minimization of a (strictly) convex quadratic spline. In

this paper, we show that what Pang suggested can be done.

4O



=

L

E

F

L_

r

===

w

it:zm

m

In past, various conjugate gradient methods were proposed for solving

the following unconstrained minimization problem:

inf f(x), (3.2)
zEa _

where f(x) is a function bounded below on R ". The major concerns in the

design of those conjugate gradient methods were how to avoid the compu-

tation of Hessians and how to implement inexact line searches so that the

algorithm would be computationally efficient. The standard assumptions

are that the objective function is twice continuously differentiable and has

bounded level sets. The global convergence of a conjugate gradient method

means that

lim inf ][f'(zk)[[ = O, (3.3)
k--_oo

where f'(z)is the gradient of f(z) and {x k} are the iterates generated in the

following way:

pk+l := _f,(x k) + flkpk,
(3.4)

xk+l :-- X k -Jr Otkp k.

Here xk,p k are vectors in R", x ° is the given initial point, pO := 0, and c_k,flk

are scalars which characterize the underlying conjugate gradient method. See

[1, 2, 7, 10, 11, 12, 22, 29] for various rules of selecting c_k, _ to get a globally

convergent conjugate gradient method.

When f(x) is a convex quadratic spline, it is very easy to evaluate its

Hessian (if it exists) and one can also use a linear time algorithm for line

search [4, 5, 13, 24]. The difficult issues in the design of conjugate gradient

methods for solving (3.1) with a general twice differentiable objective function

f(z) will disappear once f(x) becomes a convex quadratic spline. However,

some new difficult problems will emerge. First of all, a quadratic function has

a piecewise linear mapping as its gradient and is not twice differentiable in

general. Secondly, the set of minimizers of a convex quadratic spline might be

unbounded; therefore, we can not assume bounded level sets. But the simple

structure of a convex quadratic spline f(x) allows us to develop conjugate

gradient methods which generate iterates {x k} such that

k

for k > 0, (3.5)
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where f0 := f(z °) - inf_eR" f(z), 6, 3' are positive constants depending only

on f, X* := {x* E R" : f(z*) = inf eR- f(z)} is the set of all minimizers

of f(z), and dist(zk,X *) := min{llz k - z*l[: z* X*} is the distance from
x k to X*. Note that (3.5) implies that any accumulation point of {x k} is a

minimizer of f(x) and {x k } converge linearly to the unique minimizer of f(x)

if X* is a singleton. Also we can prove that converge linearly to

zero. However, in general, if the solution set is not a singleton, we do not

know whether or not the iterates {z k} converge.

The proposed convergent conjugate gradient methods may be applied to

solving a quadratic programming problem whenever it can be reformulated as

unconstrained minimization of a convex quadratic spline. In this paper, we

only discuss applications to strictly convex quadratic programs with simple
bound constraints:

min _xTMz -- bTx, (3.6)
I<_<u z

where M is an n x n symmetric positive definite matrix, b E R" (a vector of n

components), and l, u are vectors of n components with l < u. (Note that, if

li = ui, then xi _-__li and one can replace xi by Ii in (3.6) and reformulate the

problem so that l < u.) The article by Mor@ and Toraldo [20] has an extensive

list of references on quadratic programs with simple bound constraints.

In 1969, Polyak [23] proposed a conjugate gradient method for solving

(3.6). Since then, there were several articles devoted to discussions on conju-

gate gradient methods for solving (3.6) [21, 26, 20]. However, these conjugate

gradient methods do not fit the framework (3.4). In general, for am iterate

x k which is not feasible, a special procedure must be used to modify x k so

that the new x k satisfies the simple bound constraints l _< x k < u. Since

(3.6) can be reformulated as unconstrained minimization of a strictly convex

quadratic spline function [25], we can use a natural extension of the classical

conjugate gradient method to solve the unconstrained reformulation and find

the solution of (3.6). Note that this approach is completely different from

the existing conjugate gradient methods for solving (3.6), which axe closely

related to active set methods. If the quadratic programming problem (3.6)

has a nondegenerate solution, then our conjugate gradient method finds its

solution in finite iterations. As we mentioned before [24, 25], one can

use a finite Newton method to solve a strictly convex quadric programming

problem. However, if the matrix M is sparse and the matrix inversion for

computing the Newton direction is not desirable, then our conjugate gradient
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method provides an appealing alternative for solving (3.6).

The paper is organized as follows. In Section 2, we discuss a class of conju-

gate gradient methods for unconstrained minimization of a convex quadratic

spline function and establish the global error estimate (3.5). Then, we prove

that a natural extension of the classical conjugate gradient method finds the

unique minimizer x* of a strictly convex quadratic spline function f(x) in fi-

nite iterations, if f(x) is twice differer.tiable at x*. In Section 3, we show that

if the solution x* to (3.6) is nondegenerate, then the strictly convex quadratic

spline function obtained in the unconstrained reformulation of (3.6) is twice

differentiable at x*. As a consequence, we have a conjugate gradient method

for (3.6) which generates a sequence of iterates {x k} such that {x k} converge

linearly to x °. Moreover, x k - x* for k large enough if x* is nondegenerate.

Some final conclusions are given in Section 4.

Now we conclude this section by giving some terminologies and notations

used in the paper.

For simplicity, we use f'(x) to denote the gradient of f(x) (as a column

vector) and use f"(x) to denote the Hessian of f(x). A real-valued function

f(z) on R" is said to be a quadratic spline, if the gradient f'(x) of f(x) is

a piecewise linear mapping from R _ to R '_. That is, a quadratic spline is

a continuously differentiable piecewise quadratic function. Note that if(z)

might not exist if f is a quadratic spline. However, we can have a collection of

closed convex polyhedral subsets {W_}i_ of R '_ such that f(x) is a quadratic

function on each W_ and [3_=_ W_ = R _. Then f"(x) exists in the interior of

each W_ but might not exist on the boundary of W_. For convenience, we use

H(x) to denote the Hessian of f restricted on some W_ containing x. Note

that, if x is contained in several W/'s, then one can arbitrarily choose one
1

of such W_'s. The 2-norm H" II on R" is defined as [lz[[ := (_=_ x_) _. The

transpose of a matrix B or a vector x is denoted by B T or x T. For x, y E R ",

x < y means x_ < y_ for 1 _< i < n. We say that iterates {x k} converge

linearly to x* if there exist positive constants 7 and 0 such that 0 < 19< 1

and II -  '11 -<v0k for k > 1.
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3.2 Conjugate Gradient Methods for Con-

vex Quadratic Splines

In this section we propose a class of conjugate gradient methods for uncon-

strained minimization of a convex quadratic spline function f(x):

f_ := inf f(x). (3.7)
zeR _

Here we assume that f(x) is bounded below on R" (i.e. f=a_ > -co). Then

it follows from Frank-Wolfe Theorem [9, 6] that the set of minimizers of f(x)

is not empty. That is, X* := {xE R _ : f(x) = f=_n} _ (_. By using a

global error bound for approximate solutions of a convex piecewise quadratic

program, we establish global error estimates for iterates generated by the

proposed conjugate gradient methods. As a consequence, we prove the linear

convergence of an analogue of the classical conjugate method when f(z) is

strictly convex. If, in addition, the strictly convex quadratic spline f(x)

is twice differentiable at its unique minimizer x*, then the analogue of the

classical conjugate gradient method finds x* in finite iterations.

First we formulate a class of conjugate gradient methods based on a

sequence of positive definite matrices (Dk}.

Algorithm 13 For any given x ° and pO = 0 in R '_, generate a sequence of

iterates as follows:

(13.1} let r k := -f'(xk);

(13.2)

(is.#

(ls.6)

choose a positive definite matriz Dk ;
(rk)rDkp k

set 19k := --(pk)rD_pk if P k # 0 or 19k := 0 /fpk = 0;

compute the descent direction pk+l := r k + 19kpk;

find the step size tk > 0 such that (pk+l)Tf'(xk + tkp k+l) = O;

set x k+* := x k + tkp k+_ .

Remark. In general, we choose D k := H(xk), whenever H(x k) is positive

definite. This is always possible if f(x) is strictly convex. When f"(x k) is only

positive semidefinite, we might choose D k = H(x k) + eI as an approximation

of H(xk), where e is a fixed positive constant and I is the identity matrix.

In the case that f(x) is a strictly convex quadratic function, one can easily

verify that the above method, with D k = f"(xk), is the classical conjugate

gradient method.
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Theorem 14 Assume that there exists a positive constant e such that

_11=11_ < _D_ _<e-_ll_ll_

for x E R '_ and k = O, i,.... Let {x _} be the sequence of iterates generated

by Algorithm 13. Then there exist two positive constants 6 - 5(f,e) and

7 - 7(f) such that

/

(xk, X*) <- 7" (fo + y/_o) I1
dist

_here fo := f(x °) - f:_.

(14)o) 2 for k >_o, (3.8)

Proof. It is proved in [25] that, if f is a convex quadratic spline, then there

exists a positive constant a (depending only on f) such that

pT/,(x)_2
i_ J <- _(f (x)- f (x + tp)),

whenever pT f'(x) < 0 and pT f'(x + tp) = 0 (cf. Lemma 3.1 in [25]).

By (13.5) in Algorithm 13, we have

(pk+l)Tf'(xk + tkp _+1) = 0

and

(p_+l)T ff(x_) = (rk)T ff(X k) + flk(pk)T f'(x k) = -Ilrkl[= < O, (3.9)

Therefore,

2

Since pTD_p > glpll_, we derive that

Ilpk÷all2 < l(p_+l)TDkpk+l
C

= 1 ((rk)TDkrk + 2fl_(rk)TDkpk + fl_(pk)TDkpi: )

= 1 ((rk)TDkr_:_ fl_(pk)TDkp_: )
£

_< l((rk)TDkrk),

(3.10)
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where the last equality follows from the definition of ilk.

}llrll 2, by the above inequality, we obtain

_< 1 rkl2

it followsfrom(3.9/and(3.II/that

Since rTDkr <

(3.11)

(3.12)

By (3.10) and (3.12) we get

s' ' _< (z s
Since f(x) is a convex quadratic spline, by Theorem 2.2 in [19], (3.13) implies

that there exists a positive constant 8 (depending only on f and _) such that

(1-F?o)_ , k=o,1,..., (3.i4)
/

f (zk) - fmin -< fo [I

where f0 :- f(x °) - f_, >- O.

By the global error estimate for a feasible solution of a convex piecewise

quadratic program (cf. Corollary 2.8 in [15]), there exists a positive constant

_, (depending only on f) such that

dist (x_,X *) <_ "y (f (x k) - fmin + Cf (xk) - fmin) • (3.15)

By (3.14), we have

Cf (xk) - fmin -< _0 (1
\

(14)'o)_ < _o 1 (1+ fo)_ (3.16)

(I + fo) 2

It follows from (3.14), (3.15), and (3.16) that

This completes the proof of Theorem 14.
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Remark. The restriction on {D k } means that {D k } is a sequence of uni-

formly bounded matrices and is _lso bounded aways from the set of singular

matrices. It is easy to see that, if Dk's are chosen from a finite collection

of positive definite matrices, then {D k} satisfies the assumption made in

Theorem 14. In particular, D k := H(x k) satisfies the a_sumption made in

Theorem 14 if f(x) is strictly convex.

Note that, if f(z) has a unique minimizer z*, then dist(zk, X *) = Ilzk-x'll
and the sequence of iterates {x _} converges linearly to the minimizer x* of

f(x). Theoretically, regardless of the choice of Dk's, {x k} always converges

linearly to x*. However, a better choice of Dk's may increase the value of

8 and speed up the convergence of {xk}. The next theorem shows that

D k := H(x k) is generally a sound choice for Dk's, especially if f(x) is twice

differentiable at x*.

Theorem 15 Suppose that f(x) is a strictly convex quadratic spline and x*

is the unique minimizer of f(x). For k > 1, define

I,
D k := I,

n(xk),

if u(x _) # n(x _-')

if ft(x k-l) ¢ f'(x k) + H(zk)(x _-1 - x _)

otherwise.

Then the iterates {x k} generated by Algorithm 13 converge linearly to x*. If,

in addition, f"(z*) exists andH(x) = f"(x) wheneverf"(z) exists, then the
iterates {x k} converge finitely to x*. That is, x k = x* when k is large enough.

Proof. Since there are only finitely many distinct H(xk)'s, Dk's satisfy the

assumption of Theorem 14. Thus, the iterates {x k} converge linearly to the

unique minimizer x* of f(z). Since f"(x*) exists, by Taylor expansion, we

have

1

f(x) = f(x*) + (f'(x*))T(x -- X*) + _(X -- x*) T f"(x*)(x -- X*) + o(llx - _"I1_).
(3.17)

If W_ contains x*, then there exist a vector h and a matrix B such that

i x*) TB(x x*) for x e Wi, (3.18)
f(x) = f(x*) + hT(x -- x*) + -_(x --

G
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since f(x) is quadratic on W_. For any x E W_, let xt = x" + t(x - x'). Then

xt E W_ for 0 < t < 1. It follows from (3.17) and (3.18) that, for 0 < t < I,

_2

thT(x -- x*) + _(x -- x*) TB(x -- x*) = f(xt)

t 2

= t(f'(x*))T(x -- x*) + g(x -- x*) Tf't(x*)(x -- x*) + o(t211=- =*112).

As a consequence, for any x E W_,

hT(x -- x*) = (f'(x*))T(x -- x*),

(x -- x') T B(x -- x*) = (x -- x*) T f''(x*)(x -- x*).

The above argument shows that, if x* E W_, then

1

f(x) = f(x') + (f'(x*))T(x -- X*) + _(X -- x')T f'(x*)(X -- X*) for x e W_.

(3.19)

Let W* := U=.ew, W_. Let & := dist(z*,Wi) and 5 := min{5, : x* ¢ W_}.

Since W_ are closed, 5 > 0. From the definition of 5 we know that x E W*

if ]Ix - z*[[ < 8. Therefore, z* is in the interior of W*. Moreover, by (3.19),

f(x) is actually a quadratic function on W*.

Since x* is in the interior of W* and {x k } converge to x*, there exists an

integer ko > 0 such that x k is in the interior of W* for k > ko. Since f(x)

is a quadratic function on W*, f"(z) = f"(z*) for z in the interior of W*.

Thus, for k > ko,

D k = H(x k) = f"(= _) =_ f"(x*),

f'(x k-l) = f'(x k) + H(xk)(z k-1 - xk).
(3.20)

Let k* be the smallest nonnegative integer such that (3.20) holds for k > k*.

Then, by the definition of D k, we get D k" = I. Since (pk°)Trl¢* -- 0, we have

pk'+l = r k*. Therefore, {xk}k>k. is a sequence of iterates generated by the

classical conjugate gradient method applied to the strictly convex quadratic

function

g(x) := f(x*) + (x - x*)T f'(x *) + {(x -- x*)T f"(X*)(X -- X*)

- f(x*) + }(x- x*)Tf"(x*)(x -- x*).
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Thus, we have x k - x* for k _> k* + n.

Remark. Note that (pk)Trk = 0 for all k. Therefore, if D k = I, then

pk+l = r k and the conjugate gradient algorithm automatically restarts at x k.

The condition for D k = H(x k) is that f(x) is the same quadratic function

at x k and x k-1. Suppose that f(x) has a unique quadratic representation

on each polyhedral region W_. Then the choice of D k guarantees that the

conjugate gradient algorithm restart_ whenever the new iterate enters a poly-

hedral region different from the current one. It seems appropriate to restart

in a new region since f(x) has a new quadratic form there. The only prob-

lem is that it degenerates to the steepest descent method if the iterates keep

moving from one region to another region. However, the twice differentiabil-

ity of f(x) at the solution ensures that the iterates will stay in one region

eventually. In general, it is not easy to decide when to restart the conjugate

gradient method. Powell [29] did a thorough analysis on numerous restart

strategies, including Fletcher and Reeves's restart in n or (n + 1) iterations

[7] and Beale's restart procedure [3]. Without restarts, Powell [24] shows

that the conjugate gradient method usually has a linear rate of convergence.

In application, it is convenient to use H(x), the Hessian of f(x) restricted

in some W_ containing x, instead of f"(x) (cf. the next section). If f"(x)

exists and W_ has nonempty interior, then g(x) (-- f"(x)) is independent of

the choice of W_. However, if W_ has no interior points, then W_ is contained

in an (n - 1)-dimensional hyperplane in R _. In this case, there are many

different quadratic functions whose restriction on W_ are the same as the

restriction of f(x) on W_. This means that H(x) might not be the same

as f"(x) even though f"(x) exists. For example, consider f(xl,X2) = (xl +

x2)__ + A(A - 1 - Xl - x2)_., where A is a fixed constant satisfies 0 < A _< I.

Then it is natural to consider f as a convex quadratic spline over 4 convex

polyhedral regions:

w_ := {(Xl,X_):(x_+ x_)>__0,(_ - 1 - _1- _2)> 0},
w2 := {(_1,_): (_1+ _) >__0,(_ - _ - _ - _) < 0},
w3 := {(Xl,X2):(Xl+ x2) _<0,(A- 1 - x_ - x2)_>0},
w_ := {(_1,_): (_ + _2)< 0,(_ - 1 - _ - x_)< 0}.

(0 0)Obviously, for 0 < A < 1, W1 is empty and the Hessian of f on W4 is 0 0 "

__-7Z.

w

49



= :
u

5:

u

However, if _ = 1, then f(xi,x2) - (x, + x2) 2 and f"(x) - 0 "

case, W1 = W4 and all the regions contain the origin. However, if we use

(00)H(0, 0) = 0 0 as the Hessian of f on W4 (which degenerates to a point),

then H(0,0) 7_ f"(O,O). When a polyhedral region W_ is denned by linear

inequalities Ax >_ b, Wi has nonempty interior if and only if Ax >_ b satisfies

the Slater condition (i.e., A_: > b for some _). There is no simple way

to check whether a polyhedral region has interior point or not. Thus, we

can not expect that our choice of Wi guarantee H(z) = if(z) when f is

twice differentiable at x. That is the reason why we have to assume that

H(x) = f"(x) in the above theorem. However, if all Wi have nonempty

interior, then H(x) = if(x) whenever if(z) exists (cf. the proof of Theorem

17).

w

m

3.3 Strictly Convex Quadratic Programs with

Simple Bound Constraints

In this section we outline how the strictly convex quadratic program with

simple bound constraints, (3.6), can be reformulated as unconstrained mini-

mization of a strictly convex quadratic spline _(x) [24, 25]. As a consequence,

we have an analogue of Theorem 15 for (3.6). An very interesting result is

that _(x) is twice differentiable if (3.6) has a nondegenerate solution (d. the

proof of Theorem 17).
It is well-known from the Karush-Kuhn-Tucker conditions that x is a

solution of (3.6) if and only if there exists w E R" such that, for 1 < i < n,

Mz - b- w = O,

xi=l_ if w_>0,

xi=u_ if w_<0,

l_<_z_<_ui if wi=0.

(3.21)

Based on the above Karush-Kuhn-Tucker conditions, one can verify that x*

is a solution of (3.6) if and only

x* = (x* - c_w')_, (3.22)
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where w* = Mx* - b and c_ is any positive constant (cf. [25]). Here (z)z (or

(z) =) is the lower (or upper) truncation of z by l (or u) whose i-th component

is max{l,,z_} (or min{u,,z_}). By substituting w* = Mx*-b into (3.22),

we observe that (3.6) is equivalent to a system of piecewise linear equations.

However, by multiplying a special nonsingular matrix on both sides of (3.22),

one can prove that (3.22) is equivalent to the normal equation of a convex

quadratic spline (cf. [25]). The following lemma follows from Theorem 2.6

in [25].

Lemma 16 Suppose that M is symmetric positive definite. Then x* is a

solution of (3.6) if and only if x* satisfies the following piecewise linear equa-

tion:

= (E_ + h)_,

where E := I-viM, ol is any positive constant with a][M][ < 1, ]]MI[ denotes

the spectral radius of M, and h := o_b. Moreover, E(z - (Ex + h)r) is the

gradient of the following strictly convex quadratic spline

:= E2) - :Eh + +h))+:+ + h) U)+H 2.

As a consequence, x* is a solution of (3.6) if and only if x* is the unique

minimizer of _I!(x).

Before applying Algorithm 13 to f(x) := _(x), we give an explicit formula

for H(x). For any x E R '_, let a(x) be the diagonal matrix whose i-th

diagonal element cr_(x) is defined by the following formula:

1, ifl_<(Ex+h)_<u_

a,,(x) := { O, if (Ex + h), <_ l, or (Ex + h), >_ u,.
(3.23)

Then one can verify that, if fft"(x) exists, then

• l'(x) = E- Ea(x)E.

Thus, we define

H(x) := E- Ea(x)E. (3.24)
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One may consider H(x k) as the Hessian of ff/(x) restricted on the closed

convex polyhedral set

W(x k) := {x ¢ R": (Ex + h)_ > u_ for i ¢ L,(xk),(Ex + h)_ < l_

for i E Iz(xk), and li < (Ex + h)i < ui for i E I0(xk)},
(3.25)

where
k) := {i: (Exk+ > =d,

It(x k) := {i: (Ex k + h)i </i}, (3.26)

Io(z k) := {i: l, < (Ex k + h)i < ui}.

With O k := H(x k) and f'(z) := Ex- E(Ex + h)r in Algorithm 13, we

obtain a linearly convergent conjugate gradient algorithm for solving the

strictly convex quadratic program with simple bound constraints. Moreover,

the nondegeneracy assumption of (3.6) implies the finite termination of the

conjugate gradient method. Recall that a solution x* of (3.6) is nondegener-

ate if an only if

x_ = l_ if (Mx* - b)i > 0,

z_=u, if (Mz*-b),<O, (3.27)

l_<x}'<u_ if (Mx*-b)_=O.

Theorem 17 Suppose that M is a positive definite matrix. For any vector

x ° in R '_ and pO := O, generate a sequence of iterates {xk}, k = 1, 2,..., as

follows:

(17.1) let rk := E(Ex k + h)_- Exk;
(17.2) ifW(x k) _ W(x k-l) orp k =0, set flk :=0; otherwise, set

t_k :"- __
(rk)TEp -- (Erk)r ( k)(Epk).
(pk)TEpk -- (Epk)To'(xk)(Epk)'

(17.3) compute the descent direction pk+l := r k + flkpk;

(17.4) find tk > 0 such that

(Epk+l)T(x k + tkp k+l -- (Ez k + h + tkEpk+l)_) = 0;

(17.5) set x k+l := x k + tkp t:+l.

Then {x k} converge linearly to the unique solution x" of (3.6). Moreover, if

x* is a nondegenerate solution of (3.6), then x k =_ x* when k is large enough.
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Proof. Note that, if M is positive definite, then E is a positive definite

matrix with eigenvalues in the interval (0, 1). Thus, E - E 2 is a positive

definite matrix. As a consequence, xT(E- Eo'(xI:)E)x >_ xT(E- E2)x > 0

for x # 0. Therefore, O k := H(x i:) is positive definite (cf. [25]). Note that

_(x) is the same quadratic function on W(x k) and W(x _-1) if and only if

W(z k) = W(zk-1). Therefore, one can verify that the steps (17.1)-(17.5)

generate the same iterate as Algorithm 13 with D k defined as in Theorem

15 and f'(x) = Ex - E(Ez + h)r. Hence, by Theorem 14, {zk} converge

linearly to z*. Note that, if f"(x k) exists, then, by the proof of Theorem I5,

(X--xk)TH(xk)(X--X k) = (x--xk)Tff'(xk)(x--x k) for x • W(x_). (3.28)

Since E is positive definite, W(z k) has nonempty interior and {x - x k : z •

W(xk)} spans R'L Therefore, (3.28) implies g(x k) = f"(xk). Moreover,

H(x k) = H(x k-_) and To complete the proof, we only need to show that

- - E(E + h)r is differentiable at z* if x* is nondegenerate, since

Theorem 15 implies the finite convergence of {xk}.

Let x* be a nondegenerate solution of (3.6). Then (cf. (3.25))

intW(x*) = {x : (Ex + h)i < l_ for i • I_(x*), (Ex + h), < l,

for i • Ii(x*), and li < (Sx + h)i < u, for i • Io(z*)}.

By (3.27), for any index i, (Ez* + h), = (z* - a(Mz* - b)), can not equal

to l_ or u_. Therefore, x* • intW(x*). Since k0'(x) is a linear mapping on

the open set intW(x*), O"(x) exists for z • intW(x*). In particular, q2"(x*)

exists. This completes the proof of Theorem 17.

Remark. We only need to keep a sign pattern vector S(x) for each

polyhedral region W(z): S_(x) = 1 if (Ez + h), >_ u,, Si(x) = 0 if l, <

(Ex+h)i < ui, and Si(x) = -1 if (Ez+h)i <_ l,. With the storage of S(x _-a)

and S(xk), we can easily check whether or not W(x k) = W(zk-'), since

W(x k) _- W(x k-l) if and only if S(x k-') = S(x_). Also we can use a linear

time algorithm to find the step size tk (cf. [4, 5, 13, 24]). Therefore, the most

expensive operations in each iteration is the matrix-vector multiplications.

Note that there are only four matrix-vector multiplications involved in each

iteration:

Ex k, E(Ex _ + h)_', Ep _ , Er k ,

since Ep _:+1 = Er k + flkEp k. Therefore, roughly speaking, the computational

cost of each iteration is about four times of that of the classical conjugate
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gradient method for solving the linear system Mx - b -" O. Also note that

the reformulation does not change any sparse pattern of M.

Finally, we want to say a few words about H(x k) defined by (3.24). We

can also define cr(x) in the following way:

1, if l_ <_ (Ex + h)_ <_ ui

:= { 0, if (Ex + < l, or (Ex + h), > (3.29)

Then Theorem 17 still holds. However, the choices of a(x) are related to

how one wants to treat the current expected active constraints. See [25] for

details.

w

3.4 Conclusions

Based on a conjugate gradient method for unconstrained minimization of a

strictly convex quadratic function, we derived a conjugate gradient method

for strictly convex quadratic programs with simple bound constraints. We

also established a global error estimate for iterates which implies the linear

convergence of the iterates. In the case that the solution of the original

quadratic program is nondegenerate, then the conjugate gradient method

terminates in finite iterations. The conjugate gradient method can start at

any point which may be infeasible. The computational cost for each iteration

is O(n 2) flops, proportional to the classical conjugate gradient method. The

study indicates that the strictly convex quadratic program with simple bound

constraints (3.6) is very similar to the linear system Mx = b. Extensive

numerical experiments shall be done to compare the proposed method with

other existing methods for solving (3.6). The purpose of this article is to show

the importance of the reformulation of (3.6) as unconstrained minimization

of a strictly convex quadratic spline and to establish a foundation for further

study on applications of such an unconstrained reformulation.

Note that the conjugate gradient methods discussed in [1, 2, 7, 10, 11,

12, 22, 29] can be directly applied to an unconstrained minimization prob-

lem with a strictly convex quadratic spline as the objective function. It is

interesting to know what convergence result one may derive for this special

case,
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We study differentiable exact penalty functions, depending only on z, de-

rived from Hestenes-Powell-RockMellar's quadratic augmented Lagrangian

function for a minimization problem with two-sided inequality constraints

by using Fletcher's Lagrangian multiplier estimate. We also consider new

penalty functions, depending only on the Lagrangian multiplier, derived from

the augmented Lagrangian function. These penalty functions are particularly

useful for quadratic programming problems.

4.1 Introduction

Consider the following constrained minimization problem:

min f(x) subject to I < g(x) <_ u, (4.1)

where f : R _ _ R and g : R _ --_ R "_ are twice continuously differentiable

functions. Here we assume 1 < u and some components of l and u may be
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-oo and oo, respectively. The corresponding augmented Lagrangiam function

L(x, V, a) introduced independently by Hestenes [17, 18] and Powell [29] for

equality constraints and by Rockafellar [30, 31] for inequality constraints can

be written in the following unified way:

:-  /+tl
(4.2)2

+_ (-}(l-g(_))-y)÷ - _ltyH_,

where y is the Lagrangian multiplier corresponding to two-sided inequality

constraints, a is a penalty parameter, and (z)+ is the vector whose ith com-

ponent is max{0, zi}. The idea of using one Lagrangian multiplier for two-

sided inequality constraints was first proposed by Bertsekas [3, I, 2]. Along

with complementarity conditions, the Lagrangian multiplier y satisfies the

following equation:

f'(x) + g'(x)y=0, (4.3)
where if(z) is the gradient of f(x) whose ith component is _ and g'(x) is the

Jacobian of g(x) whose ith column is the gradient of g_(x). _'or equality con-

strained minimization problems (l = u = 0), the corresponding augmented

Lagra_ngian function is reduced to the following form:

C_ Ot

L(x,y,o_)= f(x) + _ g(x)+ + - g(_)- - _llYll_,
+ Y..,

i.e.,

L(x,y,o_) = f(x) + yTg(x) + _llg(x)[[ 2,

since

(4.4)

For equality constraints, it is natural to assume that g_(x) has rank m for

every x and Fletcher proposed to use the following estimate for the multiplier

y:

y(x) :=--(g'(x)Tg'(x))-lg'(x)Tff(x). (4.5)

Substituting y in (4.4) by y(x) given in (4.5), Fletcher obtained a penalty

function L(x,y(x),a) depending only on x [10]. Glad and Polak [12] con-

sidered that Fletcher's idea was very good, except for two shortcomings.
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"The first was that he did not know how to find automatically a satisfactory

value of the penalty a, while the other was that his extension of his for-

mula to problems with inequalities [11] results in discontinuous derivatives

in the augmented Lagrangian, which caused algorithms to jam." Therefore,

for mixed equality and inequality constraints, say li = ul = 0 for 1 < i < k

and l_ = -c_, u_ = 0 for k + 1 < i _< m, Glad and Polak proposed a new for-

mula for the multiplier y. Glad and Polak's multiplier function was designed

to minimize the violation of Kazush-Kuhn-Tucker conditions [12]:

min nf'(x)+ g'(x)yll2+ 72 _ (g,(x)y,)2, (4.6)
Y i=k+l

where 3' is a nonzero scalar. Under the linear independence constraint qual-

ification, (4.6) is a strictly convex quadratic program and its solution y*(z)

can be explicitly written as follows:

y*(x)= + (4.7)

where G(x) is the diagonal matrix whose ith diagonal entry is 0 for 1 < i < k

and gi(x) for k + l <i<m.

Comparing Fletcher's multiplier y(x) with Glad and Polak's multiplier

y'(x), we realize that y(x) is actually equal to y*(x) with 7 = 0, when g'(z)

has rank m. The matrix 72G(x) 2 is somehow a regularization factor and, as a

consequence, y*(x) is differentiable under the linear independence constraint

qualification while y(x) is only differentiable under a much stronger condi-

tion that the gradients g_(x),... ,g_(x) are linearly independent. Therefore,

Glad and Polak's multiplier y*(x) can be applied to more general cases than

Fletcher's multiplier y(x). However, within the unified framework for equal-

ity and inequality constraints, the restriction of Fletcher's multiplier y(x) is

due to its stronger requirement on the constraint qualification instead of the

types of constraints. Even for two-sided inequality constraints l < g(x) < u,

there is no reason not to use Fletcher's multiplier y(x) if g'(x) has rank m. In

fact, in this case, y(z) is much simpler than y*(x) and results in a much better

penalty function L(x, y(x), a). For example, for linear inequality constraints

such as simple bound constraints on the variable x and a quadratic objective

function f(x), y*(x) is a rational function of x while y(x) is a linear function

of x. As a consequence, it becomes extremely difficult to find a penalty pa-

razneter a that makes L(x, y*(x), a) an exact penalty function. In general,
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one can only define the penalty parazneter a to get an exact penalty function

L(x, y*(x),a) with respect to a compact set [7]. Lucidi and Grippo had to

incorporate barrier terms into the augmented Lagrangian function to get a

global exact penalty function for quadratic programs with simple bound con-

straints [13, 14]. On the contrary, for quadratic programs with simple bound

constraints, the differentiable penalty function L(x, y(x), a) is a differentiable

piecewise quadratic function which is a strongly exact penalty function with

respect to R = (a noncompact set) and the penalty parameter a can be eas-

ily estimated by using the spectrum radius of the Hessian of the quadratic

objective function [21] (cf. also Proposition 29). In fact, for quadratic pro-

grams with linearly independent t_vo-sided inequality constraints, Fletcher's

approach of constructing a penalty function depending only on x becomes an

excellent idea without the two shortcomings pointed out by Glad and Polak

(cf. Section 3).

Moreover, as an extension of Fletcher's idea, we propose to construct a

penalty function L(x(y), y, a) depending only on the Lagrangian multiplier

y if (4.3) aaways has a unique solution x(y). This approach is suitable for a

quadratic programming problem whose objective function has a nonsingular

Hessian (cf. Section 4).

It is interesting to note that L(z,y(z),o_) or L(x(y), y, a) can also be

derived as a reformulation of the Karush-Kuhn-Tucker conditions of (4.1).

This was the approach used for deriving the exact penalty functions _(x)

and @(y) for quadratic programs without knowing that they are actually

L(x,y(x),a) and L(x(y),y,a)[24, 25] (cf. also Sections 3 and 4).

The paper is organized as follows. General properties of the augmented

Lagrangian function L(x, y, a) for two-sided constraints are given in Section

2. The differentiable exact penalty functions L(x, y(x), a) and L(x(y), y, a)

are discussed in Sections 3 and 4, respectively. Final comments are included
in Section 5.

Now we give some terminologies and notations used in the paper.

For simplicity, we use f'(x) to denote the gradient of f(x) (as a column

vector) and use f"(x) to denote the Hessian of f(x). A real-valued function

f(x) on R" is said to be a quadratic spline, if the gradient f'(x) of f(x) is

a piecewise linear mapping from R _ to R ". That is, a quadratic spline is

a continuously differentiable piecewise quadratic function. The 2-norm [[. [[
1

on R" is defined as [[xl[ := (_,_1 x_) _ and the 2-norm of an n × n matrix
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B is defined as [[B][ := sup{l[Bx[[ : x E R _ with [[x][ = 1}. The transpose

of a matrix B or a vector x is denoted by B r or x T. For x,y E R'*, z < y

means xi < y_ for 1 G i < n, where xi or y¢ denotes the i-th component

of x or y. Let (z)_' be the lower and upper truncation of z by l and u,

respectively, whose i-th component is max{l_, min{u¢, z_}}. By convention,

z+ is a vector whose i-th component is max{z¢, 0}. A vector z* E R _ is said

to be a local solution of (4.1) if l G g(z*) G u and there exists a positive

constant 8 such that f(x) > f(x*) whenever l < g(x) < u and [Ix - x'lI < £.

A vector x* E R" is said to be a global solution of (4.1) if I <_ g(x') < u and

f(x) >_ f(x*) whenever l <_ g(x) _< u. m mapping x = x(w) from R k to R"

is said to be an open mapping if x(.) maps open sets in R k to open sets in

R '_ (i.e., {x(w) : w • U} is open whenever U is an open subset of Rk). It is

not difficult to verify that x(.) is an open mapping if and only if, for any w*

and 6 > 0, there exists a positive constant e such that

{x: Ilx- x(w*)ll< ¢}c - w*ll<

A mapping x = x(w) from R k to R" is said to be onto if its range is R" (i.e.,

for any _ • R _, there exists w • R k such that x(w) = _). The following

definition of exact penalty functions was commonly used in literature (cf.

[15]) and was formally given by Di Pillo and Grippo [7].

Definition 18 Let F(x) be a function from R _ to R. Then F(x) is said to

be an exact penalty function of (_. i) with respect to a subset T) of It", if x*

is a local (or global) solution of (_.1) whenever x* • 1) is a local (or global)

minimizer of F(x).

4.2 Some Properties of the Augmented La-

grangian Function

Most properties of the augmented Lagrangian function L(x, y, a) given in

this section are well-known for equality and one-sided inequality constraints

(cf. [3]). Even though Bertsekas used one multiplier for two-sided inequality

constraints in design of numerical methods for solving constrained minimiza-

tion problems, he did not explicitly use the formula (4.2) as the augmented

Lagrangian function for two-sided constraints [3, 1, 2]. Therefore, we give

63

I



z

W

i

m

m

m
i

i

..w

I

i

complete proofs of these well-known properties of the augmented Lagrangian

function here.

First we want to reformulate explicitly the Karush-Kuhn-Tucker condi-

tions of (4.1) as a system of nonlinear equations. Special cases of the follow-

ing lemma were given by Mangasarian (Lemma 2.1 in [27]), Glad and Polk

(Lemma 1 in [12]), and Li and Swetits (Lemma 2.2 in [25]).

Lemma 19 For any o_ > O, (x,y) is a Karush-Kuhn-Tucker point of (4.1)

if and only if

f'(x) + g'(x)y = 0 and g(x) = (g(x) + _y)_. (4.s)

Proof. For any given point (x, y), (x, y) is a Karush-Kuhn-Tucker point of

(4.1) if and only if (x, y) satisfies the following conditions: f'(x)+ g'(x)y = 0

and

g_(x) = l_ ify_<0,

g,(x) = u, if y, > 0, (4.9)

l_ < g_(x) < u_ ify_=0.

It is not difficult to verify that, for any given cz > 0, (4.9) is equivalent to

the system of nonlinear equations: g(x) = (g(x) + o_y)'_. •

The following property of the augmented Lagrangian function L(x, y, _)

is well-known and is fundaxnental for deriving exact penalty functions from

L(x,y, cx).

Lemma 20 For any o_ > O, ill < g(x) < u and y E R _, then

L(x,y,o_) < f(x). (4.1o)

The equality in (._.10) holds if (x,y) is a Karush-Kuhn-Tucker point of (4.1).

Proof. Let l <_ g(x) <_ u. If l (g,(x) - u,) + y, > 0, then

o < i-(g,(x)- + y,<_y,
0_

and

<0.
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As a consequence, we have that

(_(_,__,(_))__,)+.(_(_,(_)-_,)+_,)+=0.
(4.11)

2 1 --

Similarly, (4.11) holds if -_(l,- g,(z))- Y, > 0. Moreover, (4.11) trivially
1 lholds if both _(, - g,(x)) - Y, <- 0 and _(g_(x) - u_) + Y, <- O. Therefore, it

follows from the inequality in (4.11) that

L(x,v,_) =f(x) + _E,_ g_(_)- _,,)+ v_+

+_z=,(-_(_,o - _,(_))-_,):-_:-z_,:,,,____s(_).
1 ZIt follows from the equality in (4.11) and -}(z)+ = (X)+ that

2 2(_(_(_)-,,)+_)+ +_ (_(_-g(_))-_)+
o _ ii (4.12)=_ (_(_(_)-_)+_)+(_(z-_(_))-_)+

= _-_((g(_)- _)+ _y)+ ((l- g(_))- _Y)+lt

Since (z)r = z + (l- z)+ - (z - u)+, for z = g(z) + ay, we obtain

(g(x)+ozy)_ = g(x)+ay+((l- g(x)) -oLy)+-((g(x) - u) + o_y)+. (4.13)

If (x,y) satisfies the Kaxush-Kuhn-Tucker conditions, by Lemma 19 and

(4.13), we get

ay=((g(x)-u)+ay)+-((l-g(x))-ay)+. (4.14)

It follows from (4.12) and (4.14) that L(x,y,a) = f(x). II

Lemma 21 Suppose that x = x(w) and y = y(w) are differentiable mappings

of w and _ > O. Then

LL(z(w),y(w),_) = z'(w)(f'(z) + g'(z)y) (4.15)
1 # t+_(_ (_)g (_)+ _v'(_))(g(_)- (g(_)+ _v(_))r)•

Moreover, the following statements are true:
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1. If (x(w),y(w)) is a Karush-Kuhn-Tucker point of (_.1), then

L'_(x(w), y(w), o_) = O.

2. Suppose that x(w) is an open and onto mapping. If (x(w*),y(w*))

is a Karush-Kuhn-Tucker point of (4.1) and w* is a local (or global)

minimizer of i(x(w),y(w),(_), then x(w*) is a local (or global) solution

of(4.1).

Proof. By the chain rule, we have that

Z'(x(w), y(w),_) = x'(w)f'(x) - _y'(w)y

+a (lx'(w)g'(x) + y'(w)) (_(g(x) - u) + y) + (4.16)

l z = _( )+, we obtain that, forBy (z)]'=z+(l-z)+-(z-u)+ and (X)+ 1 z

z = g(z) + ay,

(_(g(x) - u) + y) + - (_(l- g(x)) - y)+ (4.17)
1= _(g(_)- (g(_)+ _y)r + _y).

The formula (4.15) follows from (4.16) and (4.I7).

If (x(w),y(w)) is a Karush-Kuhn-Tucker point of (4.1), by Lemma 19,

we have if(x) + g'(z)y = 0 and g(z) = (g(z) + ay)_. Thus, by (4.15),

L'(x(w),y(w),o_) = O.

Now suppose (x(w*),y(w*))is a Karush-Kuhn-Tucker point of (4.1). If

w* is a local (or global) minimizer of L(x(w),y(w),a), then there exists a

positive constant 5 such that

L(x(w),y(w),a) >__L(z(w*),y(w*),o_) for Hw-_0"ll < 5. (4.18)

Since x(w) is an open mapping, there exists a positive constant e such that

{x E R_: [Ix- z(w*)[[ < e} C {x(w): [[w- w'l[ < 5}. (4.19)

Now, let _ • R = be such that [1_ - _(_*)l[< _ and l < g(2) < u. By (4.19),

there is w such that x(w) = _ and [[w - w*[[ < 5. By Lemma 20 and (4.18),

we get

f(_) = f(x(w)) >_ L(z(w),y(w),a) >_ L(x(w*),y(w*),a) = f(x(w')).
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Thus, x(w*) is a local solution of (4.1).

Finally assume that w* is actually a global minimizer of L(x(w), y(w), o_).

For any _ with l < g(_) < u, there is w such that _: = x(w), because x(w) is

an onto mapping. Thus,

f(_,) = f(x(w)) > L(x(w),y(w),o_) > L(x(w*),y(w*),o_) = f(x(w*))

and x(w*) is a global solution of (4.1). •

It is interesting to note that one necessary condition for a differentiable

penalty function F(x) being exact is that the Karush-Kuhn-Tucker condi-

tions of (4.1) can be derived from the n equations F'(x) = 0. In general, this

is possible only if the multiplier y is uniquely determined by x. Therefore, it

becomes clear why the extended Mangasarian-Fromovitz constraint qualifica-

tion is a standard condition for differentiable exact penalty functions. In gen-

eral, one might not be able to derive the m equations g(x) = (g(x) + c_y(x))_

in the Karush-Kuhn-Tucker conditions from the n equations F(x) = 0 if

m > r/,.

4.3 Exact Penalty Function in Primal Vari-

ables

In this section, we discuss the penalty functions L(x, y(x), o_) derived from

Hestenes-Powell-tt.ockafellar's augmented Lagrangian function by using

Fletcher's multiplier y(x). We assume that g'(x) has rank m and

y(x) = -(g'(x) Tg'(x))-lg'(x)T f'(x).

Note that, for w = x, x_(w) is the identity matrix. The following lemma

is an immediate consequence of Lemma 21.

Lemma 22 For any x E R '_ and y E R '_,

L_(x,y(x),c_) = f'(x) -t- g'(x)y(x)

1 t+_(g (=)+ ,_y,(=))(g(=)- (g(=)+ o,y(=))_').
(4.20)
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Lemma 23 I.f g'(x)Tg'(x) +o_g'(x)Ty'(x) is nonsingular for x in a subset

ofR '_, then L(x,y(x),a) is an exact penalty function of (4.1) with respect to
7).

Proof. By the definition of y(x), we have

g'(x)T(f'(x) + g'(x)y(x)) -- O. (4.21)

It follows from (4.20) and (4.21) that

_(g'(x)rg'(x) + _¢(x)ry'(x))(g(x)- (g(x)+ _y(x))_)
(4.22)

= g'(x)TL'_(x,y(x),a).

Suppose that x* e T_ and x* is a local (or global) minimizer of L(x,y(x),a).

Then L'_(x*,y(x*),a) = O. Since x* e 9, g'(x*)Tg'(x *) + ag'(x*)Ty'(x *) is

nonsingulax. By (4.22), we have

g(x')- (g(x*)+ _y(x*))_'= o. (4.23)

From L_(x',y(x*),a) = 0, (4.23), and (4.20), we also have that f'(x*) +

g'(x*)y(x*) = O. By Lemma 19, (x*,y(x*)) is a Kaxush-Kuhn-Wucker point

of (4.1).

Note that, for w - x, x(w) = w is an open and onto mapping from

R '_ to R ". Thus, if (x*,y(x*),o_) is a Kaxush-Kuhn-Tucker point of (4.1),

by Lemma 21, x* is a local (or global) solution of (4.1). This proves that

L(x, y(x), a) is an exact penalty function of (4.1) with respect to 7). •

Theorem 24 Suppose that :D is compact. Then there exists a positive con-

stant _* such that, forO < _ < w*, L(x,y(x),a) is an exact penalty function

of (_. 1) with respect to 7).

v_ (g'(x):rg'(x))-lg'(x)Ty'(x)) (4.24)

= g'(x)Tg'(x) + o_g'(x)Ty'(x),

Proof. Note that

g'(x)Tg'(x) (I,_ +

where I,_ is the identity matrix of order m. Thus, g'(x)Tg'(x) + ag'(x)Ty'(x)

is nonsingular if and only if

Im+ oz (g'(x)T g'(x))-lg'(x)Ty'(x) (4.25)
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is a nonsingulax matrix.

Since :D is compact and g'(x), y'(x) axe continuous mappings, we obtain

V := max g'(x)Tg'(x) g'(x)Ty'(x) < oo.
_:ET)

Let a* = !. Then it is easy to verify that the matrix given in (4.25) is

nonsingulax for 0 < a < a*. Theorem 24 follows from Lemma 23. •

Theorem 25 Suppose that g(x) = Ax, where A is an m × n matrix with

rank m. If there exists a positive constant a such that

0 < a](AAT)-IAf"(x)AT(AAT) -1 < 1 (4.26)

for x in a subset :D of R _, then L(x, y(x), a) is an exact penalty function of

(_. 1) with respect to 7).

Proof. Since g(x) = Ax, it is easy to see that

y(x) = -(AAT)-IAf'(x)

and

y'(x) = - f"(x)AT (AAT) -1.

The matrix given in (4.25) can be rewritten as follows:

I,_ - _( AAT) -1Af"(x)A T (AAT) -1 . (4.27)

If (4.26) holds for x E 7), then the matrix given in (4.27) is nonsingulax

for x e 7); and it follows from (4.24) that g'(x)Tg'(x) + ag'(x)ry'(x) is

nonsingulax for x E 7). Thus, by Lemma 23, L(x, y(x), a) is an exact penalty

function of (4.1) with respect to 7). •

An immediate consequence of Theorem 25 is the following result about

an exact penalty function for quadratic programs with linearly independent

constraints:

min 2xTMx - bTx subject to l<Ax<_u, (4.2s)
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where A is an m × n matrix with rank m, M is an n x n symmetric matrix, and

b E R _. In this special case, y(x) = (AAT)-IA(Mx - b) and the augmented

Lagrangian function has the following form:

L(x,y,_):= ½xTMx-bTx+_ (_(Ax-u)+y)+
2

_y2- ll I[.
(4.29)

Theorem 26 Suppose that 0 < aI[(AAT)-IAMAT(AAT) -1 < I, L(x,y,a)

is given by (4.29), and y(x) := (AAT)-IA(b - Mx). Then L(x,y(x),a) is an

exact penalty function of (_.28) with respect to R '_.

The above theorem is an attempt to extend the following unconstrained

reformulation of a convex quadratic program with simple bound constraints.

Proposition 27 Suppose that A is the identity matrix In (m = n) and M

is positive semidefinite. Let 0 < o_[[M[[ < 1 and

where E := I- aM, c := l- ab, and d := u - ab. Then _(x) is a convex

quadratic spline. Moreover, x* is a minimizer of k_(x) if and only if x* is a

solution of the convex quadratic program (_.28).

It is easy to verify that _(x)-  libll = L(x,y(x),a). Therefore, the

above proposition shows a very important property of the penalty function

L(x, y(x), a): it preserves the convexity of the original quadratic prograrn-

ruing problem. As an extension of the above proposition, we have the follow-

ing equivalent unconstrained reformulation of a convex quadratic program

with linearly independent constraints.

Theorem 28 Suppose that 0 < a (AAT)-_AMAT(AAT) -_ < 1, M is pos-

itive semidefinite, y(x) := (AAT)-_A(b- Mx), and L(x,y,a) is given by

(4.29). Then L(x,y(x),a) is a convex quadratic spline function. Moreover,

x* is a minimizer of L(x, y(x), _) if and only if x* is a solution of the convex

quadratic program (4.PS).
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Proof. Since y'(x) = -MAT(AAT) -1, it follows from Lemma 22 that

L_(x,y(x),o_) = Px + p- 1-Q T (Qx + q)_, (4.31)

where p := AT(AAT)-IAb - b, q := c_(AAT)-_Ab,

i ATA AT(AAT)-IAM_ MAT(AAT)-IA,P:=M+_

Q := A - c_(AAT) -_AM. (4.32)

We claim that P and P- 1 T_Q Q axe positive semidefinite.

In fact, since c_ > 0, it suffices to prove that P- _ T_Q Q is positive

semidefinite. By simple algebraic manipulations, we obtain

P - 1QTQ = M- o_MA(AAT)-'(AAT)-_ATM.
a

Since M is positive semidefinite, there exists an n × n matrix B such that

M = BTB. Thus,

p - iQTQ = BT(I,_ - c_BA(AAT)-_(AAT)-IATBT)B.
a

Therefore, P - 1 T_Q Q is positive semidefinite, if the symmetric matrix

I,_ - aBA( AAT)-_ ( AAT) -_ A TB T (4.33)

is positive semidefinite. For any matrix D, it is easy to verify that DTD

and DD T have the same set of nonzero eigenvaJues by using singular value

decomposition. Since the 2-norm of a symmetric positive semidefinite matrix

is its largest eigenvalue, we have IIDTDH = IIDDTII. Let D := BA(AAT) -1.

Then

IIB A( AAT)-I (AAT) -' A T BTII

= I[(AAT)-IATBTBA(AAT)-I H

-- II(AAT) -_ ATMA(AAT)-_ H.

Since 0 < o_H(AAT)-'AMAT(AAT)-I < I, all eigenvalues of the symmetric
matrix

o_BA(AAT) -_ (AAT) -_ A T B T

71



L :-

H
w

t_

r,_

m

u

te_zl

w

axe less than 1. Therefore, all eigenvalues of the symmetric matrix given in

(4.33) axe positive. As a consequence, the matrix given in (4.33) is positive

definite. This completes the proof that P 1 T-- _Q Q is positive semidefinite.

From the proof of Lemma 2.i in [25] we know that L_(x,y(x),c_) is a

monotone mapping. As a consequence, L(x,y(x),c_) is a convex function

[28].
Since M is positive semidefinite, x* is a solution of (4.28) if and only if

(x*,y(z*)) is a Kaxush-Kuhn-Tucker point of (4.28). Similarly, x* is _ min-

imizer of L(z,y(z),a) if and only if L'(x*,y(z*),o_) = O, since L(x,y(x),_)

is convex. By Lemma 21 (1) and Theorem 26, (x*,y(x*)) is a Kaxush-Kuhn-

Tucker point of (4.28) if and only if L_(x,y(z),a) = 0. Therefore, x* is a

solution of (4.28) if and only if x* is _. minimizer of L(x,y(x),a). •

The above theorem was proved first by Li and Swetits [25] when m = n

and A is a nonsingulax matrix (cf. Proposition 27). Note that, if A is

a nonsingulax matrix, then (4.28) can be reformulated as a quadr£tic pro-

gram with simple bound constraints by using the substitution _2 = Ax. For

quadratic programs with simple bound constraints, we actually have the fol-

lowing stronger result [21].

Proposition 29 Suppose that A is the identity matrix I,_ of order n and

L(x,y,a) is given by (4.29). Let 0 < 2a[[M[[ < 1. Then x* is a local

solution (or an isolated locaZsolution, or a globalsolution) of if and
only if x* is a local minimizer (or an isolated local minimizer, or a global

minimizer) of the quadratic spline L(x, b - Mx, o_).

Based on Theorem 28 and Proposition 29, we axe intrigued by the possi-

bility of proving the following conjecture.

Conjecture 30 Consider the following unconstrained minimization of a quadratic

spline:

min L (x,(AAT)-IA(b - ix),a) , (4.34)

where L(x, y, a) is given by (_.29). There exists a positive constant o_ such

that (4.28) and (4.34) have the same set of local solutions, the same set of

isolated local solutions, and the same set of global solutions.

m

72

B



L

_m

Remark. As we mentioned before, it is easy to reformulate (4.28) as a

quadratic program with simple bound constraints if A is nonsingular (m = n)

by using the substitution _ = Ax. Therefore, by Theorem 28 and Proposition

29, the unknown part of the above conjecture is when m < n and M is not

positive semidefinite.
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4.4 Exact Penalty Function in Dual Vari-
ables

As we pointed out in Section 2, if the Lagrangian multiplier y can not be

uniquely determined by x, then it is unlikely to find a differentiable exact

penalty function depending only on x. In this section, we discuss the pos-

sibility of deriving an exact penalty function in the du_l variable y from

the augmented Lagrangian function L(x, y, c_). We assume that g(x) = Ax,

where A is any m × n matrix, and the Jacobian f"(x) of f(z) is always

nonsingulax. Then (4.3) has a unique solution x(y) for any given y and

x'(y) = -Af"(x) -_. (4.35)

For w = y, y'(w) is the identity matrix I,_. For any given y and g'(x) = A T,

by (4.15) and (4.35),

L_(_(y),y, _)= _'(y)(/'(_) + g'(_)y)
+ _(_'(y)g'(x)+ .I_)(g(_) - (g(_)+ _Y)r)

= _d(e_I_ - Af"(x)-'A T) (g(x) - (g(x) + o_y)r),

(4.36)

since (x(y),y) satisfies (4.3). By Lemma 19, (x(y),y)is _ Karush-Kuhn-

Tucker point of (4.i) if and only if

g(_(y))- (g(_(y))+ .y)r = 0. (4.37)

When the matrix

aim- AI"(z)-_A T (4.38)

is nonsingul_r, by (4.36), (x(y),y)is a Karush-Kuhn-Tucker point of (4.1)

if and only if L_(x(y), y, a) = 0. In the following two theorems, we state

conditions on a which ensure that the m_trix given in (4.38) is nonsingular.
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Theorem 31 For any compact set 79 of R "_, let

a* := max I[Af"(x(y))-_ATH < c_.
yE_

Then, for _ > a* and y e 79, L_(x(y),y,a) = 0 if and only if (x(y),y) is a

Karush-Kuhn- Tucker point of (4.1).

Theorem 32 Suppose that there exists a such that a > HAT f"(x)-IAH for

x in a subset 79 of Ft". Then, for y • 79, L_(x(y),y,a) = 0 if and only if

(x(y),y) is a Karush-guhn-Tucker point of (4.1).

Now consider the following quadratic programming problem:

rain lxT Mx -- bT x subject to I <_ Ax <_ u, (4.39)

where A is any m x n matrix, M is an n × n nonsingular symmetric matrix,

and b • R ". The corresponding augmented Lagrangian function L(x, y, a)

has the form given in (4.29).

Theorem 33 Let x(y) = M-l(b - ATy) and L(x,y,a) be given by (4.29).

Then, for o_ > IIATM-1All, L_(x(y),y,a) = 0 if and only if (x(y),y) is a

Karush-Kuhn- Tucker point of (4.1).

The above theorem is a special case of Theorem 32. Note that x(y) =

M-X(b - ATy) is an open and onto mapping when A has rank n. In this case,

by Theorem 33 and Lemma 21, x(y*) is a local (or global) solution of (4.1),

if y* is a local (or global) minimizer of L(x(y), y, a) with a > IIATM-_AII.

We can consider L(x(y), y, c_) as an exact penalty function in dual variables.

Corollary 34 Suppose that x(y) = M-_(b- ATy), L(x,y,_) is given by

(4.P9), and A has rank n. Then, for c_ > IIATM-XAll, x(y*) is a local (or

global) solution of (4.1) if y* is a local (or global) minimizer of L(x(y),y,a).

The above result is an attempt to extend the following unconstrained

reformulation of a strictly convex quadratic programming problem [24, 25].
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Proposition 35 Suppose that M is positive definite and a > HATM-XAH.

Then_* := i-_(b - A_y") is a solutionof (4S9) and (_', y*) is a Karush-
Tuhn- Tucker point of (4.39) if and only if y* is a minimizer of the following

convex quadratic spline:

1 _H(d By)+ll2,¢(y) := _y_By- 511(By- _)+l[_- - (4.40)

where B = _I - AM-1A T, c := o_AM-lb - l, and d := o_AM-lb - u.

The penalty function ¢(y) was introduced based on a reformulation of

the Karush-Kuhn-Tucker conditions for (4.39) [25]. In fact, one can easily

verify that

l_(y)
L(M-I(b - ATy),y,oc) = -- 2bTM-lb. (4.41)a

Based on Proposition 35 and Corollary 34, it is reasonable to believe that

(4.39) is equivalent to the unconstrained minimization of the quadratic spline

L(M-l(b-ATy),y,a). "

Conjecture 36 Consider the following unconstrained minimization prob-

lem:

min L (M-l(b- ATy),y,a) , (4.42)

whereL(x, y,_) is the correspondingaugmentedLag_angianfunctionof (4.S9)
given in (_.29}. Then there exists a positive constant c_ such that y* is a local

solution (or global solution} of (4.42) if and only if x* := M-_(b- ATy *) is

a local solution (or global solution} of (4.39,) and (x*,y*) is a Karush-Kuhn-

Tucker point of (_.39}.

Remark. For the dual unconstrained reformulation, there might be maaay

dual solutions y* corresponding to one primal solution x*. Therefore, it

is impossible to establish correspondence between isolated local solutions.

The conjecture is true if M is a positive definite symmetric matrix [25] (cf.

Proposition 35).
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4.5 Comments

With a differentiable exact penalty function, one can use various uncon-

strained minimization techniques to solve the original constrained minimiza-

tion problem. See [3, 4, 5, 6, 7, 8, 9, 13, I4, 16, 19, 20, 23, 24, 25, 26] for

some recent works as well as references on the subject.

It is interesting to note that, when (x(w),y(w)) satisfies (4.3), one way

to reformulate the Karush-Kuhn-Tucker conditions (4.8) is to find a function

F(w) such that

F'(w) = + (4.43)

where B(w) is a nonsingular matrix. Then (x(w),y(w))is a Karush-Kuhn-

Tucker point of (4.1) if and only if F'(w) = 0. If the original constrained

minimization problem is convex, then it is equivalent to the unconstrained

minimization of the penalty function F(w). The exact penalty functions _(x)

and ¢(y) for convex quadratic programs with simple bound constraints and

strictly convex quadratic programs, respectively, were constructed based on

this approach [24, 25]. Later, Li proved that _(x) is a strongly exact penalty

function for any quadratic program with simple bound constraints [21]. Note

that, by Lemma 21, F(w):= L(x(w),y(w),a) satisfies (4.32) if (x(w),y(w))

is a solution of (4.3). The differentiable exact penalty functions _(x) and

¢(y) can actually be derived from the augmented Lagrangian function by

eliminating either x or y from the equation (4.3) (cf. Sections 3 and 4).

However, when the differentiable convex quadratic piecewise penalty func-

tions either in the primal variable x or in the dual variable y were derived

based on the reformulation (4.43) of the Karush-Kuhn-Tucker conditions, the

special structures of the involved quadratic program seem to be crucial for

the construction of these penalty functions. The author was asked, by P.

Tseng, J.-S. Pang, a_d N. Gould in different circumstances, whether or not

these penalty functions are related to differentiable penalty functions given by

Di Pillo and Grippo or augmented Lagrangian functions. Our study reveals

that the penalty functions derived for convex quadratic programs can ac-

tually be derived from Hestenes-Powell-l_cka_ellar's augmented Lagrangian

function for two-sided constraints by eliminating either x or y by using the

linear equation in the Karush-Kuhn-Tucker conditions. Furthermore, our

results show that Fletcher's multiplier function y(x) (if works) produces an
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exact penalty function for a quadratic programming problem on R _ and the

penalty parameter can be easily determined by the 2-norm of the matrix

(AAT) -1AMAT (AAT) -1.

The penalty function L(x(y), y, cz) seems to be extremely useful when one

has to solve a sequence of separable strictly convex quadratic programming

problems which are closely related to one another:

rain 1 T_x x -- xTb k subject to lk < Ax <_ u k, (4.44)

where A has rank m. Let Fk(y) := Lk(b k - ATy, y, a) be the corresponding

differentiable piecewise quadratic exact penalty function of (4.44) as given in

Theorem 33. In this special case, for a > IIATAH, Fk(y) is actually a strictly

convex quadratic spline (cf. [25]). In order to find the unique minimizer yk+l

of Fk(y), we can use yk as the initial guess. If bk, lk, u k are small perturbations

of bk-l, l k-l, u k-l, respectively, then yk+l should be close to yk and it is easy

to find yk+l by starting from yk. A data smoothing technique for piecewise

convex/concave curves was developed based on the efficiency of a Newton

method for finding the unique minimizer of Fk(y) starting from yk (d. [22]).
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